
Information about the schema for Active Directory™, the directory service that is included with Microsoft® Windows® 2000 Server, is
essential for anyone who is managing the directory service or who is developing directory-aware applications for Microsoft® Windows®
2000–based servers. The material in this chapter covers how the schema for Active Directory is defined, how to modify ("extend") the
schema, what safeguards are implemented in the service to protect the schema from being corrupted during the process of modifying
it, what automatic checks are included to ensure schema consistency, and what precautions to take when you install new applications
on a domain controller.

In This Chapter

Introduction to the Active Directory Schema
Location of the Schema in Active Directory
Active Directory Schema Objects
Schema Cache
Default Security of Active Directory Objects
Extending the Schema

Related Information in the Resource Kit

l For an overview of the Active Directory physical structure, see "Active Directory Data Storage" in this book.

l For more information about Active Directory tools, see "Active Directory Diagnostics, Troubleshooting, and Recovery" in this book.

l For information about service publication, see "Service Publication in Active Directory" in this book.

Introduction to the Active Directory Schema

In Active Directory, the schema contains definitions for the universe of objects that can be stored in the directory, and it enforces the
rules that govern both the structure and the content of the directory. The schema consists of a set of classes, attributes, and syntaxes
that represent an instance of one or more classes in the schema. A class is a category of objects that share a set of common
characteristics. It is a formal description of a discrete, identifiable type of object that can be stored in the directory. Each object in the
directory is an instance of one or more classes in the schema. An attribute describes the characteristics of some aspect of an object.
Attributes define the types of information that an object can hold. For each class, the schema specifies the mandatory attributes and
optional attributes that constitute the set of shared characteristics of the class. The values assigned to attributes define specific
characteristics. A syntax is the data type of a particular attribute. Syntaxes determine what data type an attribute can have. Active
Directory uses a set of standard syntaxes. The predefined syntaxes do not actually appear in the directory, and you cannot add new
syntaxes. An everyday example of an object is a vehicle, which can belong to the class of trucks, the class of motorcycles, or the class
of cars, and so forth. A car can be described by its make, model, and color. These are some of the attributes of the car. In the example
of the car, the possible values for the color of the car might be red, blue, or gray. The syntax for color might be the nomenclature (such
as 2B1R2Y) that denotes specific combinations of primary colors that comprise what one sees as the colors of automotive paints.

The schema specifies the relationships between classes of objects. Each object stored in the directory is an instance of one or more
classes in the schema. User, Computer, and printQueue are examples of classes in Active Directory. For example, if the schema
contains a class called User, the user accounts, Sue and Mary, are two objects in the directory that are instances of the class User. The
object Mary might contain an optional attribute defined for this class called phoneNumber. This attribute for the object Mary of the class
User might have the value 555-0100.

For example, the attribute phoneNumber can be defined to take values of the syntax String(numeric), which means that the value can
contain only the digits 0 through 9.

The base schema that ships in Microsoft Windows 2000 contains all of the class and attribute definitions that are used by Windows 2000
and Windows 2000 components.

The schema itself is represented in Active Directory by a set of objects known as "schema objects." For each class in the schema, there
is a schema object that defines the class. This object is called a classSchema object. For each attribute in the schema, there is also a
schema object that defines the attribute. This object is called an attributeSchema object. Therefore, every class is actually an instance
of the classSchema class, and every attribute is an instance of the attributeSchema class. Storing the schema in the directory has many
advantages. One example is that when user applications locate the schema in the directory, they can read the schema to discover what
types of objects and properties are available.

Administrators and applications can extend the schema by adding new attributes and classes or by modifying existing ones. Schema
definitions are required by applications that need to create or modify objects in Active Directory. Applications that are "directory-
enabled" are programmed to recognize the attributes and syntaxes that are required to interact with the directory.

Location of the Schema in Active Directory

The objects stored in Active Directory are arranged in a logical hierarchy called the Directory Information Tree (DIT). Active Directory
includes a preconfigured database (commonly referred to as the base DIT) that contains the information that is required to install and
run Windows 2000 and Active Directory. The base DIT is installed during a fresh install of a Windows 2000 domain controller. One
section of the base DIT is the base schema.

The Directory Information Tree is divided into directory partitions. A directory partition is a tree of directory objects that forms a unit of
replication in Active Directory.

Schema objects are located in the Schema container. The Schema container is not a container in the sense of a special type of Active
Directory object that contains other objects; the Schema container is a special purpose object class. The Schema container
(cn=schema,cn=configuration,dc=< forest root domainName>) contains all of the class and attribute definitions that are required to
locate objects in Active Directory and to create new objects. It is the topmost object of the schema directory partition.

The relationship of the schema partition and the Configuration and Schema containers is illustrated in Figure 4.1.

Figure 4.1 Location of the Schema Container

Note The schema is a directory partition in its own right to prevent potential dependency problems that can arise because of the way
directory objects are replicated. For more information about the schema directory partition and why the schema is a separate directory
partition, see "Name Resolution in Active Directory" in this book.

Chapter 4 - Active Directory Schema
Windows 2000 Server

Page 1 of 25Chapter 4 - Active Directory Schema

16/08/2004ms-help://MS.TechNet.2004JUL.1033/win2ksrv/tnoffline/prodtechnol/win2ksrv/reskit/distsys/part1/dsgch04.htm

Finding the Schema Container
Every Active Directory object can be referenced by a unique and unambiguous name known as the distinguished name (also known as a
"DN"). The distinguished name identifies the domain that holds the object as well as the complete path through the container hierarchy
by which the object is reached. The distinguished name of the Schema container can be expressed as follows:

cn=schema,cn=configuration,dc=< forest root domainname>

For more information about the distinguished name, see "Active Directory Logical Structure" in this book.

You can view the contents of the Schema container by using the Active Directory Schema console in Microsoft Management Console
(MMC). You also can bind to the schema directory partition and view schema objects by using the Active Directory Service Interfaces
(ADSI) Edit MMC console or the Ldp tool.

Note The ADSI Edit snap-in is not one of the default MMC snap-ins that is provided with Windows 2000 Server. To use ADSI Edit and
Ldp, install the Support Tools that are located in the Support\Tools folder on the Windows 2000 Server operating system CD. To install
the tools, double-click the Setup icon in that folder. For more information about using ADSI Edit and Ldp, see Microsoft® Windows®
2000 Support Tools Help. For information about installing and using the Windows 2000 Support Tools and Support Tools Help, see the
file Sreadme.doc in the Support\Tools folder of the Windows 2000 operating system CD. For information about diagnosing and
troubleshooting problems using the Ldp tool, see "Active Directory Diagnostics, Troubleshooting, and Recovery" in this book.)

It is possible to locate the Schema container without knowing the domain name. Installation scripts and other applications that might
not know what domain they are to be used in are able to gain access to the schema because they bind to a special entry at the top of
the logical namespace called rootDSE, which provides the schema location. The rootDSE (DSA-specific Entry) represents the top of the
logical namespace and, therefore, the top of the Lightweight Directory Access Protocol (LDAP) search tree. The attributes of rootDSE
identify, among other things, the directory partitions — that is, the domain, schema, and configuration directory partitions — as well as
the forest root domain directory partition. One attribute, schemaNamingContext, provides the location of the schema so that
applications that are connecting to any domain controller can find and read the schema. (For more information about the rootDSE, see
"Name Resolution in Active Directory" in this book.)

To identify the Schema directory partition by using ADSI Edit

1. Start the ADSI Edit console in MMC.

2. Right-click ADSI Edit, and then click Connect to.

The Connection dialog box is displayed.

3. In the Connection Point check box, make sure Naming Context is selected.

4. Select RootDSE from the Naming Context box, and then click OK.

5. In the Console Tree, double-click My Connection.

The RootDSE folder is displayed.

6. Right-click the RootDSE folder, and then click Properties.

7. In the Select property to view dialog box, select schemaNamingContext from the list of properties ("attributes").

8. In Attribute Values, view the Value(s) box to see the distinguished name of the schema directory partition.

Note The Schema Management snap-in is not one of the default MMC snap-ins that is provided with Windows 2000 Server. To make it
appear in the list of available snap-ins, you must install the admin tools package (Adminpak.msi). To register the Schema Management
snap-in, open your %SystemRoot%\System32 folder and run Regsvr32 Schmmgmt.dll from the command prompt or from the Run
command on the Start menu.

Subschema Subentry
The rootDSE also carries a mandatory attribute called the subSchemaSubEntry. Its value is the distinguished name of a subSchema
object in the directory in which the server makes available the attributes (in attributeTypes) and classes (in objectClasses) of which the
Active Directory schema is comprised. This special object, an instance of the unique subSchema class, is used for administering
information about the schema, in particular the object classes and attribute types that are supported. This enables client applications to
retrieve the information by querying the subSchema entry. Clients must only retrieve attributes from a subSchema entry by requesting
a base object search of the entry, where the LDAP search filter is "(objectClass=subSchema)." The location of the subSchemaSubEntry
container is as follows:

CN=Aggregate,CN=Schema,CN=Configuration,DC=<DomainName>,DC=<DomainRoot>

Schema Files
Active Directory data is distributed among all domain controllers in the forest. No single domain controller stores all Active Directory
data for the entire forest, but every domain controller does hold a copy of the schema. The Active Directory data that is in use on a
particular domain controller is stored in a file named Ntds.dit. The location of the Ntds.dit file is an option that is set during the
promotion process while you create the directory. The default location for the database and database log files is %SystemRoot%\Ntds.
(For more information about the Ntds.dit file, see "Active Directory Data Storage" in this book.)

Another file, the Schema.ini initialization file contains the information that is necessary for creating the default directory objects and the
default security for the DIT, as well as the Active Directory display specifiers. For information about display specifiers, see the Microsoft
Platform SDK link on the Web Resources page at http://windows.microsoft.com/windows2000/reskit/webresources . Although this file is
named Schema.ini, the schema itself is actually preloaded and is contained in the base version of Ntds.dit that is installed by the Active
Directory Installation wizard.

Active Directory Schema Objects

The attributes and classes in Active Directory are stored in the Schema container as directory objects called schema objects. The
Schema container itself is represented in Active Directory by an object that is an instance of the Directory Management Domain (dMD)
class.

For more information about Active Directory attributeSchema and classSchema objects, see the Microsoft Platform SDK link on the Web
Resources page at http://windows.microsoft.com/windows2000/reskit/webresources .

attributeSchema Objects
Attributes are data items that are used to describe the classes that are defined in the schema. They are defined in the schema
separately from the classes, which allows a single attribute definition to be applied to many classes.

Attributes are attributeSchema objects. Each attributeSchema object is an instance of the attributeSchema class. The attributeSchema
object lists, among other things, the following information:

Page 2 of 25Chapter 4 - Active Directory Schema

16/08/2004ms-help://MS.TechNet.2004JUL.1033/win2ksrv/tnoffline/prodtechnol/win2ksrv/reskit/distsys/part1/dsgch04.htm

l The LDAP display name of the attribute.

l The object identifier for the attribute.

l The globally unique identifier (GUID) for the attribute.

l The syntax of the attribute.

l The range for the attribute. For integers, range defines the minimum and maximum value; for strings, range defines the minimum
and maximum length.

l Whether the attribute is a multivalue attribute. Note that multivalue attributes hold a set of values with no particular order. There is
no guarantee that multivalue attributes are ever going to be returned in the order in which they were stored (or in any other order).

l Whether and how the attribute is indexed.

Single-Value or Multivalue Attributes

Attributes might be single-value or multivalue. Single-value and multivalue attributes are defined by the singleValued attribute being
set to TRUE or FALSE. The Active Directory Schema console reports this as "single-valued" or "multivalued" rather than as an attribute-
value pair.

A multivalue attribute can contain multiple values, all of uniform syntax. Note that multivalue attributes hold a set of values with no
particular order. There is no guarantee that multivalue properties are ever going to be returned in the order in which they were stored
(or any other order).

Note The LDAP protocol reads a multivalue attribute as a single entity. This can be inconvenient or even impossible when the number
of values in a multivalue attribute becomes large. An Internet draft titled "Incremental Retrieval of Multivalued Properties" defines an
option called Range that can be specified as part of an attribute description to retrieve the values of a multivalue attribute
incrementally. Servers might or might not honor the range option. Servers that support the range option include the object identifier
1.2.840.113556.1.4.802 in the supportedControls operational attribute on the rootDSE. Clients must not use the range option unless
this object identifier is present. The range option is a constant, case-insensitive string value (Range=), followed by a range-specifier
that lists the initial and terminal values in the range.

For more information about the retrieval of multivalue attributes, see the Internet Engineering Task Force (IETF) link on the Web
Resources page at http://windows.microsoft.com/windows2000/reskit/webresources . Follow the links to Internet Drafts, and then use
a keyword search.

Indexed Attributes

Making an attribute indexed means that directory searches involving that attribute are going to be more efficient than if the attribute
had no index. Attributes are indexed when the least significant bit in their searchFlags attribute is set to the value 1. Changing the
value of the bit to 1 dynamically builds an index; changing the value to 0 or deleting it drops an index for the attribute in question. The
index is built automatically by a background thread on the directory server.

Ideally, indexed attributes are single value with highly unique values that are evenly distributed across the set of instances. Multivalue
attributes can be indexed, but the cost to build the index is larger in terms of storage and updating. Even with single-value attributes,
keep in mind that the more indexed attributes a class has, the longer it takes to modify or create instances of the class.

Attributes for attributeSchema Class Objects

Attributes for the attributeSchema class are described in Table 4.1.

Table 4.1 Attributes for the attributeSchema Class

Attribute Syntax Mandatory
Multi-
value Description

cn Unicode Yes No Descriptive relative distinguished name for the schema
object.

attributeID Object identifier Yes No Object identifier that uniquely identifies this attribute.

lDAPDisplayName Unicode Yes, but filled in
automatically

No Name by which LDAP clients identify this attribute.

schemaIDGUID String(Octet) Yes No GUID that uniquely identifies this attribute.

mAPIID Integer No No Integer by which Messaging Application Programming
Interface (MAPI) clients identify this attribute.

attributeSecurityGUID GUID No No GUID by which the security system identifies the
property set of this attribute.

attributeSyntax Object identifier Yes No Syntax object identifier of this attribute.

oMSyntax Integer Yes No Syntax of this attribute as defined by the XAPIA
X/Open Object Model (XOM) specification.

isSingleValued BOOL Yes No Indicates whether this attribute is a single-value or
multivalue attribute. Note that multivalue attributes
hold a set of values with no particular order. There is
no guarantee that multivalue attributes are ever going
to be returned in the order in which they were stored
(or in any other order).

extendedCharsAllowed BOOL No No Indicates whether extended characters are allowed in
the value of this attribute. Only applies to attributes of
syntax String(teletex).

rangeLower Integer No No Lower range of values that are allowed for this
attribute.2

rangeUpper Integer No No Upper range of values that are allowed for this
attribute.2

systemFlags Integer No No Flags that determine specific system operations. Note:
this attribute cannot be set or modified.
The systemFlags that are relevant to the schema

Page 3 of 25Chapter 4 - Active Directory Schema

16/08/2004ms-help://MS.TechNet.2004JUL.1033/win2ksrv/tnoffline/prodtechnol/win2ksrv/reskit/distsys/part1/dsgch04.htm

objects are the following:
Attribute is required to be a member of the partial set
= 0x00000002.
Attribute is not replicated = 0x00000001.
Attribute is a constructed attribute = 0x00000004.

searchFlags Integer No No The searchFlags property of each property's
attributeSchema object defines whether a property is
indexed.
The four currently defined bits for this attribute are as
follows:
1 = Index over attribute only;
2 = Index over container and attribute;
4 = Add this attribute to the Ambiguous Name
Resolution (ANR) set (should be used in conjunction
with 1);
8 = Preserve this attribute on logical deletion (that is,
make this attribute available on tombstones).

isMemberof
PartialAttributeSet

BOOL No No A Boolean value that defines whether the attribute is
replicated to the global catalog (if replicated to the
global catalog, it has a value of TRUE, if not, its value
is FALSE).
For more information, see "Active Directory
Replication" in this book.

SystemOnly BOOL No No System-only attributes are those attributes on which
Windows 2000 and Active Directory depend for normal
operations.
If TRUE, only the system can modify this attribute. No
user-defined attribute must ever have the systemOnly
flag set.

objectClass Object identifier Yes Yes Class of this object, which is always attributeSchema.

nTSecurityDescriptor NT-Sec-Des Yes No Security descriptor on the attributeSchema object
itself.

oMObjectClass String(Octet) No No For object-syntaxed attributes (OM-syntax = 127), the
Basic Encoding Rules (BER) encoded object identifier
of the XOM object class. For more information about
BER encoding, see RFC 2251.

LinkID Integer No No Whether a linked attribute or not, an even integer
denotes a forward link, an odd integer a back link.
A forward link is a pointer to another object in the
directory; a back link points back to the first object
that has a forward link to it. (For more information
about links, see "Active Directory Data Storage" in this
book.)

classSchema Objects
The classSchema object specifies the various attributes of the class with which it is associated and, among other things, defines the
following constraints of objects that are instances of the class:

l The list of mandatory attributes that must be present on any object that is an instance of this class.

l The list of optional attributes that, in addition to the mustContain attributes, can and might be found on an object that is an
instance of this class.

l Hierarchy rules that determine the possible parents in the Directory Information Tree of an object that is an instance of the class.

An object can have only attributes that belong to either the mustContain or the mayContain list for the class.

The classSchema object is essentially a template that contains the "rules" for creating objects in an Active Directory class. When a new
object is created in a class, the classSchema object ensures that this new object has the same properties ("attributes") as all other
objects in the class. After an object has been created, the object's class can never be changed.

The classSchema object contains, among other things, the following information:

l The LDAP display name of the class.

l The object identifier for the class.

l The GUID for the class.

l The attributes that must be present for an instance of the class.

l Other attributes that can be present for an instance of the class.

l The classes to which the parent of instances of this class may belong.

l The superclass from which this class inherits characteristics.

l Other Auxiliary classes from which this class inherits attributes.

l The type of class (Abstract, Structural, or Auxiliary).

l The default hiding state for the class. If you do not want instances of your class displayed by the end-user user interface, you can
define the class as hidden by default.

Categories of Object Classes
The X.500 1993 specification requires that object classes be assigned to one of four categories:

1. Unicode is a 16-bit character set that contains all of the characters commonly used in information processing.
2. When rangeLower and rangeUpper are defined for attributes that are integers, they define the limits of the value held by the
attribute. When they are defined for attributes that are strings, they define the number of characters that can be held in the string.

Page 4 of 25Chapter 4 - Active Directory Schema

16/08/2004ms-help://MS.TechNet.2004JUL.1033/win2ksrv/tnoffline/prodtechnol/win2ksrv/reskit/distsys/part1/dsgch04.htm

l Structural

l Abstract

l Auxiliary

l 88

Different categories of classes allow for defining structure in the directory. The four categories of classes are applied as follows:

Structural Classes Structural classes are the only classes that can have instances in the directory. That is, you can create directory
objects whose class is one of the Structural classes. A Structural class can be used in defining the structure of the directory and is
derived from either an Abstract class or another Structural class. A Structural class can include any number of Auxiliary classes in its
definition. This type of class is specified by a value of 1 in the objectClassCategory attribute.

Abstract Classes Abstract classes are templates that are used only to derive new Structural classes. Abstract classes cannot be
instantiated in the directory. This means that no object can belong only to an Abstract class; each object of an Abstract class also
belongs to some nonabstract subclass of that class. A new Abstract class can be derived from an existing Abstract class. This type of
class is specified by a value of 2 in the objectClassCategory attribute. Classes of the abstract category have the sole function of
providing attributes for subordinate classes, called subclasses. A subclass contains all mandatory and optional attributes of the class
from which it is derived, called its superclass, in addition to those specific to the class itself. Likewise, the subclass of that class contains
all attributes of both superclasses, and so forth.

Auxiliary Classes Auxiliary classes are like "include" files; they contain a list of attributes. Adding the Auxiliary class to the definition
of a Structural or Abstract class adds the Auxiliary class's attributes to the definition. An Auxiliary class cannot be instantiated in the
directory, but new Auxiliary classes can be derived from existing Auxiliary classes. This type of class is specified by a value of 3 in the
objectClassCategory attribute. For example, the securityPrincipal class is an Auxiliary class, and it derives its attributes from the parent
abstract class called top. Although you cannot create a security principal object in the directory (because Auxiliary classes cannot have
instances), you can create an object of the Structural class user, which has the securityPrincipal class as an auxiliary. The attributes of
the securityPrincipal class contribute to making the user object recognizable to the system as a security account. Similarly, the group
class has securityPrincipal as an Auxiliary class.

88 Classes Classes defined before 1993 are not required to fall into one of the preceding categories; assigning classes to categories
was not required in the X.500 1988 specification. Classes that were defined prior to the X.500 1993 standards, default to the 88 class.
This type of class is specified by a value of 0 in the objectClassCategory attribute. Do not define new 88 classes.

Note Active Directory does not return an error for 88 classes; it only performs looser semantic checking. For example, an 88 class can
be used as an abstract superclass, but it can also be directly instantiated. When you define new schema classes, you need to use one of
the X.500 1993 categories.

Inheritance

Inheritance, which is also referred to as derivation, is the ability to build new object classes from existing object classes. The new object
is defined as a subclass of the parent object. A subclass is a class that inherits from some other class; for example, a subclass inherits
structure and content rules from the parent. The parent object becomes a superclass of the new object. A superclass is a class from
which one or more other classes inherit information. The inherited information includes mandatory and optional attributes
(systemMustContain, mustContain, systemMayContain, and mayContain) and its parent classes in the directory hierarchy
(systemPossSuperiors and possSuperiors). The diagram in Figure 4.2 illustrates an object class hierarchy.

If your browser does not support inline frames, click here to view on a separate page.

Figure 4.2 Object Class Hierarchy

For example, you can specify a Salesperson class that defines information about the salespeople in your company, including specialized
information, such as commission rate and travel route. You can specify the Salesperson class as subClassOf of the User class. This
would cause the Salesperson class to inherit all the mandatory and optional attributes and directory-parent classes of the User class
after the schema cache is updated. You would not have to define these attributes for each salesperson in your company.

All structural object classes are subclasses, directly or indirectly, of a single abstract object class, which is called top. Every object
represented in the directory belongs to top and, as a result, every entry must have an objectClass attribute. When you create a new
class, you must specify the superclass: If you are not creating a subclass of an existing class, the new class is a subclass of top.

A new class can inherit mandatory and optional attributes from more than one existing class. However, any additional classes must be
specified by the auxiliaryClass attribute.

Note If you add another attribute later to a class that has subclasses or auxiliary subclasses, the new attribute is automatically added
to the subclasses after the schema cache has been updated.

To view a graphical representation of the Active Directory class hierarchy, see the Microsoft Platform SDK link on the Web Resources
page at http://windows.microsoft.com/windows2000/reskit/webresources .

System and Changeable Attribute Pairs

Some aspects of a class-definition object are contained in pairs of attributes, where the value of one of these attributes can be changed
by administrators and the other cannot. These attribute pairs are mustContain/systemMustContain, mayContain/systemMayContain,

Page 5 of 25Chapter 4 - Active Directory Schema

16/08/2004ms-help://MS.TechNet.2004JUL.1033/win2ksrv/tnoffline/prodtechnol/win2ksrv/reskit/distsys/part1/dsgch04.htm

possSuperiors/systemPossSuperiors, and auxiliaryClass/systemAuxiliaryClass.

In each of these pairs, the value of the attribute that begins with the word system cannot be changed by administrators. This enables
Active Directory to protect certain key attributes of certain classes and ensure that the schema stays consistent and usable. System-
only properties can only be changed by the directory system agent (DSA). System-only properties are those properties on which
Windows 2000 and Active Directory depend for normal operations. For example, the attributeID and governsID attributes in the schema
are system-only attributes. The value of the other (nonsystem) attributes in each pair can be changed by administrators.

Mandatory Attributes

The term mandatory attributes refers to object attributes for which values must be specified. If you do not specify a value for a
mandatory attribute, one of the following happens:

l The attribute takes on a default value.

l The object is not created until you specify a value for the attribute.

Which of the object's attributes are mandatory is determined by the class to which the object belongs.

Some mandatory attributes are inherited. Because every schemaClass object belongs to a subclass called top in the class hierarchy,
each schemaClass object inherits the mandatory attributes that belong to top. Table 4.2 is a list of the mandatory attributes that every
object inherits from top. To see a graphical representation of the Active Directory class hierarchy, see the Microsoft Platform SDK link
on the Web Resources page at http://windows.microsoft.com/windows2000/reskit/webresources .

Table 4.2 Mandatory Attributes That All schemaClass Objects Inherit

Note You can view an object's mandatory attributes by using the Active Directory Schema snap-in. (The attributes are displayed on the
Attributes tab in the Properties dialog box.) Because some of an object's mandatory attributes are inherited from its parent class,
you might need to view the attributes of the parent class in order to identify all of the mandatory attributes of your object. The Active
Directory Schema snap-in is an MMC tool that is provided by Windows 2000 to enable administrators to modify the schema by using a
graphical interface.

Attributes for classSchema Objects

Table 4.3 is a list of the attributes a classSchema object can have.

Table 4.3 Attributes of a classSchema Object

Inherited Mandatory
Attribute Default Status

nTSecurityDescriptor Defaults if not specified. The default value depends on the default security descriptor for the
classSchema class.

objectCategory Defaults to the value of the default object category of the class (which is usually the class itself).
Can be changed after the class is created.

objectClass No default. Administrator must specify the class.

Attribute Syntax Mandatory?
Multi-
value? Description

cn Unicode Yes No Descriptive relative distinguished name for the
schema object.

GovernsID Object identifier Yes No Object identifier that uniquely identifies this class.

LDAPDisplayName Unicode Yes No Name by which LDAP clients identify this class.

SchemaIDGUID String(Octet) Yes, but
defaulted.

No GUID that uniquely identifies this class.

RDNAttID Object identifier No No Relative-distinguished-name-type of instances of this
class (OU, CN).

SubClassOf Object identifier Yes No1 The class from which this object inherits attributes.

SystemMustContain Object identifier No Yes The list of mandatory attributes for instances of this
class. This list cannot be changed.

MustContain2 Object identifier No Yes The mandatory attributes for instances of this class.

SystemMayContain Object identifier No Yes The optional attributes for instances of this class.

MayContain2 Object identifier No Yes The optional attributes for instances of this class.

SystemPossSuperiors2 Object identifier No Yes The classes that can be parents of this class in the
directory hierarchy. After creation of the class, this
property cannot be changed.

PossSuperiors2 Object identifier No Yes The classes that can be parents of this class in the
directory hierarchy.
For an existing classSchema object, values can be
added to this property but not removed.

systemAuxiliaryClass2 Object identifier No Yes The Auxiliary classes from which this class inherits its
optional (mayContain) and mandatory (mustContain)
attributes. After creation of the class, this property
cannot be changed.

AuxiliaryClass2 Object identifier No Yes The Auxiliary classes from which this class inherits its
optional (mayContain) and mandatory (mustContain)
attributes.
A multivalue property that specifies the auxiliary
classes that this class inherits from. For an existing
classSchema object, values can be added to this
property but not removed.

Page 6 of 25Chapter 4 - Active Directory Schema

16/08/2004ms-help://MS.TechNet.2004JUL.1033/win2ksrv/tnoffline/prodtechnol/win2ksrv/reskit/distsys/part1/dsgch04.htm

DefaultHidingValue BOOL No No The default hiding state for the class. If you do not
want instances of your class displayed in the user
interface, you can define the class as hidden.

DefaultSecurity
Descriptor

String(Octet) No No The default security descriptor that is assigned to
new instances of this class if no security descriptor is
specified during creation of the class or is merged
into a security descriptor if one is specified.

ObjectClassCategory Integer Yes No Class types are defined as follows:
88 Class = 0; Structural = 1; Abstract = 2;
Auxiliary = 3.

SystemOnly BOOL No No If TRUE, only the system can create and modify
instances of this class.

ObjectClass Object Identifier Yes Yes This object's class, which is always classSchema.

NTSecurityDescriptor NT-Sec-Desc Yes No Security descriptor on the classSchema object.

DefaultObjectCategory Distinguished
name

Yes No The default object category of new instances of this
class if none has been specified.

Note When you look at the attributes in a classSchema object's mustContain attribute list, you are not seeing the complete set of
attributes that must be present for an instance of a class to exist. For example, in the class A, the classSchema object B specifies a list
of mustContain attributes that an instance of A must have through the systemMustContain and mustContain attributes. However,
because mandatory attributes are also inherited, the complete list of attributes for an instance of class A includes the inherited
mustContain attributes from all classes from which B inherits — that is, all classes in the subClassOf and auxiliaryClass lists for the
classSchema object B. The mayContain attributes for object B are also defined this way. The possSuperiors are defined this way as well,
except that possSuperiors are inherited only from classes in the subClassOf list, not from the classes in the auxiliaryClass list.

Syntaxes
The syntax for an attribute defines the storage representation, byte ordering, and matching rules for comparisons of property types.
Whether the attribute value must be a string, a number, or a unit of time is also defined. Every attribute of every object is associated
with exactly one syntax. The syntaxes are not represented as objects in the schema, but they are programmed to be understood by
Active Directory. The allowable syntaxes in Active Directory are predefined. You cannot add new syntaxes.

When you define a new attribute, you must specify both the attributeSyntax and the oMSyntax numbers of the syntax you want for the
attribute. The attributeSyntax number is an object identifier and oMSyntax number is an integer. The oMSyntax is defined by the XOM
specification. This model provides a relatively fine-grained definition of syntax. For example, there are distinct oMSyntax attributes to
distinguish among several types of printable strings, according to factors such as the supported character set and whether case is
significant. Table 4.4 is a list of the valid syntaxes for attributes in the Active Directory schema.

Table 4.4 Valid Syntaxes for Attributes in the Active Directory Schema

1 Objects cannot inherit from more than one class by using this attribute. Use the auxiliaryClass attribute to define additional parent
classes.
2 Each value is the lDAPDisplayName of a class that is a class object identifier. Note that you must ensure that the classes exist or
will exist when the new class is written to the directory. If one of the classes does not exist, the classSchema object is not added to
the directory.

Syntax1 attributeSyntax oM Syntax
ASN 1-Encoded
Object Identifier Description

Undefined 2.5.5.0 \x550500 Not a legal syntax.

Object(DN-DN) 2.5.5.1 127 \x550501 The fully qualified name of an object
in the directory.

String(Object-Identifier) 2.5.5.2 6 \x550502 The object identifier.

Case-Sensitive String 2.5.5.3 27 \x550503 General String.
Differentiates uppercase and
lowercase.

CaseIgnoreString(Teletex) 2.5.5.4 20 \x550504 Teletex. Does not differentiate
uppercase and lowercase.

String(Printable), String
(IA5)

2.5.5.5 19, 22 \x550505 Printable string or IA5-String.
Both character sets are case-
sensitive.

String(Numeric) 2.5.5.6 18 \x550506 A sequence of digits.

Object(DN-Binary) 2.5.5.7 127 \x550507 A distinguished name plus a binary
large object.

Boolean 2.5.5.8 1 \x550508 TRUE or FALSE values.

Integer, Enumeration 2.5.5.9 2, 10 \x550509 A 32-bit number or enumeration.

String(Octet) 2.5.5.10 4 \x55050A A string of bytes.

String(UTC-Time), String
(Generalized-Time)

2.5.5.11 23, 24 \x55050B UTC Time or Generalized-Time.

String(Unicode) 2.5.5.12 64 \x55050C Unicode string.

Object(Presentation-
Address)

2.5.5.13 127 \x55050D Presentation address.

Object(DN-String) 2.5.5.14 127 \x55050E A DN-String plus a Unicode string.

String(NT-Sec-Desc) 2.5.5.15 66 \x55050F A Microsoft® Windows NT® Security
descriptor.

Page 7 of 25Chapter 4 - Active Directory Schema

16/08/2004ms-help://MS.TechNet.2004JUL.1033/win2ksrv/tnoffline/prodtechnol/win2ksrv/reskit/distsys/part1/dsgch04.htm

LargeInteger 2.5.5.16 65 \x550510 A 64-bit number.

String(Sid) 2.5.5.17 4 \x550511 Security identifier (SID).

Note A complete syntax specification consists of both the attribute-syntax and the oMSyntax. Whenever more than one oMSyntax can
be used with an attribute-syntax, the correct oMSyntax must be used.

Active Directory does not currently enforce character set restrictions for string syntaxes, so if you use attributes with string syntax, use
only characters in the standard character set.

Object Identifiers
Object identifiers are unique numeric values that are granted by various issuing authorities to identify data elements, syntaxes, and
other parts of distributed applications. Because they are globally unique, object identifiers ensure that the objects that are defined by
these issuing authorities do not conflict with one another when different directories, such as Active Directory and Novell Directory
Services, are brought together in a global directory namespace.

Object identifiers are found in Open Systems Interconnection (OSI) applications, X.500 directories, Simple Network Management
Protocol (SNMP), and other applications in which uniqueness is important. Object identifiers are based on a tree structure in which a
superior issuing authority allocates a branch of the tree to a subordinate authority, which in turn allocates sub-branches of the tree.

LDAP requires a directory service, like Active Directory, to identify object classes and attributes with an object identifier syntax. The
object identifier is the value for the governsID attribute in a class-schema object and for the attributeID attribute in an attributeSchema
object. These are required attributes; therefore, object identifiers are necessary when you create new classes or attributes.

Object identifiers in the Active Directory base schema include some issued by the International Standards Organization (ISO) for X.500
classes and attributes and some issued by Microsoft. Object identifier notation is a dotted string of non-negative numbers (for example,
1.2.840.113556.1.5.4), the components of which are shown in Table 4.5.

Table 4.5 Components of a Sample Object Identifier (1.2.840.113556.1.5.4)

Object identifiers ensure that every object is interpreted appropriately — for example, that a telephone number is not mistaken for an
employee number. A series of widely used objects and attributes is standardized for use in object identifiers. New object identifiers are
issued by standards authorities, and they form a hierarchy below which new object identifiers can be managed internally. An object
identifier is represented as a dotted decimal string (for example, 1.2.3.4). Enterprises (and individuals) can obtain a root object
identifier from an issuing authority and use it to allocate additional object identifiers internally. For example, Microsoft Corporation has
been issued the root object identifier 1.2.840.113556. Microsoft manages further branches from this root internally. One of these
branches is used to allocate object identifiers for Active Directory classes, another for Active Directory attributes, and so forth.

Most countries and regions in the world have an identified National Registration Authority (NRA) responsible for issuing object identifiers
to enterprises. In the United States, the NRA is the American National Standards Institute (ANSI). The NRA issues root object
identifiers. An enterprise can register a name for the object identifier as well. There is a fee associated with registering the root object
identifiers and registered names. Contact the NRA for your country or region for details. The International Standards Organization (ISO)
recognizes NRAs and maintains a list of contacts on their Web site.

The issuing authority assigns an object identifier space that is a branch of the ISO-International Telecommunications Union (ITU) object
identifier tree. Assume that your company is assigned the space 1.2.840.111111. You can extend this space internally as you want
(within the constraints of the structure of an object identifier). For example, you can subdivide this space further (by appending dotted
decimals to the object identifier root) and assign these subspaces to various divisions within your company. Each division, in turn, can
further subdivide the subspace allotted to it. For example, by using the sample object identifier 1.2.840.111111, your company might
have the subspace 1.2.840.111111.1.4 for attributes and 1.2.840.111111.1.5 for classes. An internal issuing authority within the
company, using an Administrator account, might then allocate object identifiers from this space on request. The governsID attribute on
every classSchema object and the attributeID attribute on every attributeSchema object are mandatory attributes that contain an
object identifier string. In this example, all of your company-created classSchema objects have a governsID of the form
1.2.840.111111.1.5.x, where x is a decimal number. Similarly, all of your company-created attributeSchema objects have an
attributeID of the form 1.2.840.111111.1.4.x.

Structure and Content Rules
The schema enforces rules that govern both the structure and the content of Active Directory. When you add, delete, or modify objects,
validation takes place by using these schema rules to ensure the integrity of the directory. Structure rules define the possible tree
structures. When you create a new object, structure rules determine the validity of the object class to which you designate the new
object. You cannot create an object that belongs to a nonexistent class. You must first create the new class. Conversely, these rules do
not allow you to delete or modify an object that has already been deleted. In Active Directory, the structure rules are completely
expressed by the possSuperiors and systemPossSuperiors attributes that are present on each classSchema object. These attributes
specify the possible classes that can be parents of an object instance of the class in question. In other words, the possSuperiors and
systemPossSuperiors attribute values determine the object classes and, hence, the location in the Directory Information Tree under
which objects of the class in question can be instantiated.

Content rules determine the mandatory and optional attributes of the class instances that are stored in the directory. New objects must
contain all of the mandatory attributes that are specified by the classSchema object in the schema and can contain any of the optional
attributes. In Active Directory, the content rules are completely expressed by the mustHave, mayHave, mayContain,
systemMustContain, and systemMayContain attributes of the schema definitions for each class. In addition, specific marked attributes
have additional restrictions imposed by the Security Account Manager (SAM). SAM read-only objects consist of the following:

1The oMSyntax names are specified against the syntax numbers to enable correct choice.

Numerical Values
of the Sample
Object Identifier What the Numerical Values Denote

1 ISO ("root" authority) Issued 1.2 to ANSI, which in turn . . .

2 ANSI Issued 1.2.840 to USA, which in turn . . .

840 USA Issued 1.2.840.113556 to Microsoft, which . . .

113556 Microsoft Internally manages several object identifier
branches under
1.2.840.113556 that include

1 Active Directory A branch called Active Directory that includes . .

5 Classes A branch called Classes that includes

4 Builtin-Domain A class called Builtin-Domain.

Page 8 of 25Chapter 4 - Active Directory Schema

16/08/2004ms-help://MS.TechNet.2004JUL.1033/win2ksrv/tnoffline/prodtechnol/win2ksrv/reskit/distsys/part1/dsgch04.htm

revision, objectSID, domainReplica, creationTime modifiedCount, modifiedCountAtLastPromotion, nextRID, serverState,
samAccountType, isCriticalSystemObject, dbcsPwd, ntPwdHistory,lmPwdHistory, lastLogon, lastLogoff, badPasswordTime,
badPwdCount ,logonCount, supplementalCredentials

Below are some other attributes on which SAM enforces special checks:

sAMAccountName. Domain-wide uniqueness, without replication latency, 20-character limit for user objects (not groups).

Member. Membership rules as defined in Windows 2000 groups.

userWorkstations. Must be valid computer names.

primaryGroupID. For a user/computer account, must point to a group and the user /computer account must be a member of the group;
the group and the user must be in the same domain. If the computer is a domain controller, the primary group must be the domain
controllers group.

LockoutTime. For a user or computer object. Only legal value that can be written is 0 to clear an account.

LockoutPasswordLastset. The system normally writes to it, but two special values can be written 0 and -1 to expire /unexpire a
password.

For more information about these attributes, see the Microsoft Platform SDK link on the Web Resources page at
http://windows.microsoft.com/windows2000/reskit/webresources .

Schema Cache

All changes made to Active Directory are validated first against the schema. For performance reasons, this validation takes place
against a version of the schema that is held in memory on the domain controllers. This "in-memory version," called the schema cache,
is updated automatically after the on-disk version has been updated. The schema cache provides mapping between attribute identifiers
such as a database column identifier or a MAPI identifier and the in-memory structures that describe those attributes. The schema
cache also provides lookups for class identifiers to get in-memory structures describing those classes.

When the computer is started, the schema cache is loaded from the underlying database and updated automatically whenever the on-
disk version is updated. When changes are made to the schema, the schema cache is automatically updated within five minutes after
the first change was applied. During the interval before the schema updates are copied to the schema cache, objects that reference a
new or modified class or attribute cannot be added. This behavior keeps the cache consistent, but it can be confusing because changes
are not apparent until the cache is updated, even though they were applied on disk.

There is also a mechanism for updating the schema cache on demand. You can use this when you modify the schema. You can add the
schemaUpdateNow attribute to the rootDSE with a value of 1. The value is not used; it acts as a trigger or operational attribute. Writing
this attribute starts a cache reload.

The rootDSE is a DSA-specific entry that holds the attributes that pertain to the local domain controller, such as directory partitions,
server name, and supported LDAP version numbers. The schemaUpdateNow attribute is defined as an operational attribute, used only
for administering the directory server itself. It is an artifact attribute that is never defined in the schema and does not require any
storage. Generally, when you set an operational attribute, you trigger some action on the server.

Adding the schemaUpdateNow attribute causes a schema cache update to start immediately. The call is blocking, which means that if
the call returns with no error, the cache is updated and all schema updates are ready to be used. An error return, however, indicates
that the cache update is not successful. It is recommended that applications that want to take advantage of this feature be designed to
accommodate the blocking write, particularly in giving the user feedback, if the program or script runs interactively.

Important It is recommended that you force an immediate schema cache update only once and only after all required schema updates
are finished because cache loads are expensive in terms of memory.

Default Security of Active Directory Objects

The default security descriptor for an Active Directory object is specified in the schema. Essentially there are two segments to the
default Active Directory security configuration or default access rights granted.

l Initial security for all objects created while installing Active Directory.

l Default security for objects created after installing Active Directory.

For information about the default security descriptors for Active Directory objects, see the Microsoft Platform SDK link on the Web
Resources page at http://windows.microsoft.com/windows2000/reskit/webresources . For information about permissions and security
descriptors, see "Access Control" in this book.

Note There are special cases where default security is not applied on newly created objects. For more information about these
situations, see the Microsoft Platform SDK link on the Web Resources page at
http://windows.microsoft.com/windows2000/reskit/webresources .

Default Security of the Domain Directory Partition
The domain directory partition object is derived from the object class domainDNS; therefore, the default security is equivalent to the
default security for the object class domainDNS.

The default security descriptor for the domain directory partition comprises the following:

l Full control permissions to the Domain Administrators group and the System group, and Read permissions to the Authenticated
Users group.

l Read property on all properties to the Everyone group. This permission provides backward compatibility for application
programming interfaces (APIs).

l Replicating Directory Changes, Replication Synchronize, and Manage Replication Topology permissions to the Enterprise Domain
Controllers group. These permissions allow members of the Enterprise Domain Controllers group to manage replication
automatically.

l Replicating Directory Changes, Replication Synchronize, and Manage Replication Topology permissions to the Builtin Administrators
group. Administrators of individual domain controllers can use these permissions to troubleshoot replication problems.

l Inheritable Full Control to the Enterprise Administrators group. Enterprise Administrators, by definition, have complete control of
each domain.

l Inheritable List Contents to the Pre-Windows 2000 Compatible Access group.

l Inheritable Read Property on RAS Information, General Information, Membership, User Account Restrictions, and User Logon on all
User Objects permissions to the Pre-Windows 2000 Compatible Access group.

l Inheritable Read on all Group objects.

l Inheritable Auditing successful/failed Writes to the Everyone group.

Activating the auditing policy ensures that writes that are performed on the directory (on any object) are audited immediately without
the need for any extra user intervention. Inheritable access control entry (ACE) provides a convenient way of removing auditing policy.

Page 9 of 25Chapter 4 - Active Directory Schema

16/08/2004ms-help://MS.TechNet.2004JUL.1033/win2ksrv/tnoffline/prodtechnol/win2ksrv/reskit/distsys/part1/dsgch04.htm

Default Security of the Configuration Directory Partition
The default security descriptor for the configuration directory partition comprises the following:

l Full control permissions to Domain Administrators, and System and Read permissions to the Authenticated Users.

l Replicating Directory Changes, Replication Synchronize, and Manage Replication Topology permissions to the Enterprise Domain
Controllers group. These permissions enable domain controllers in the forest to replicate from each other and automatically
reconfigure the replication topology on the basis of replication delays and latency for the configuration directory partition.

l Replicating Directory Changes, Replication Synchronize, and Manage Replication Topology permissions to the Builtin Administrators
group. These permissions enable administrators from individual domain controllers to synchronize replication and topology
management for the configuration directory partition.

l Enable Inheritable Full Control to the Enterprise Administrators group. This permission allows members of the Enterprise
Administrators group exclusive control over the Configuration container. The Enable Inheritable Full Control permission is required
to control the Configuration container throughout the forest.

l Enable Inheritable Auditing to the Writes by the Everyone group. Activating the auditing policy ensures that writes that are
performed on the directory (on any object) are audited immediately without the need for any extra user intervention. Inheritable
ACE provides a convenient way of removing auditing policy.

Default Security of the Schema Directory Partition
The default security descriptor for the schema directory partition comprises the following:

l Write property permission on the fSMORoleOwner attribute to the Schema Administrators group. This permission enables members
of the Schema Administrators group to forcibly transfer the domain controller where schema changes are made.

l Change Schema Master control permission to the Schema Administrators group. This permission enables members of the Schema
Administrators group to change (per the Flexible Single-Master Operation [FSMO] protocol) the domain controller where schema
changes are made.

l Inheritable Full Control permission designated to the Schema Administrators group. By default, the Schema Administrators group is
the only group that has write access to the entire schema container. A schema object does not have any exclusive control over its
own security, thus the object inherits its security from the schema container.

l Replicating Directory Changes, Replication Synchronize, and Manage Replication Topology to the Enterprise Domain Controllers
group. These permissions enable the members of the Enterprise Domain Controllers group to manage replication of the schema in
the forest automatically.

l Replicating Directory Changes, Replication Synchronize, and Manage Replication Topology permissions to the Builtin Administrators
group. These permissions enable the administrators per domain controllers to resolve replication issues.

l Read permissions designated to the Authenticated Users group. This permission enables the members of the Authenticated Users
group the right to read the schema.

l Audit successful/failed Writes by the Everyone group. Activating the auditing policy ensures that writes that are performed on the
directory (on any object) are audited immediately without the need for any extra user intervention. Inheritable ACE provides a
convenient way of removing auditing policy.

Default Security of Attributes and Classes

All attributes and classes inherit security from the ACLs on the Schema container. This ensures that the entire schema is consistent in
terms of security.

Note The initial security allows only Schema Administrators write access to the Schema container

Extending the Schema

When the existing class and attribute definitions in the schema do not meet the needs of your organization, the schema can be
extended by adding or modifying schema objects. The Active Directory schema can be extended dynamically. That is, an application can
extend the schema with new attributes and classes and use the extensions immediately. Schema updates are accomplished by creating
or modifying the schema objects that are stored in the directory. This allows you to make the objects that are meaningful to your
organization available throughout the enterprise.

Note As is true for every object in Active Directory, schema objects are protected by access control lists (ACLs), so only authorized
users can alter the schema. (For more information about ACLs, see "Access Control" in this book.)

Adding or modifying class or attribute definitions in the schema involves adding or modifying the corresponding classSchema object or
attributeSchema object. The operations that are involved in this process are similar to adding or modifying any object in Active
Directory, except that additional checks are performed to ensure that changes do not cause inconsistencies or problems in the schema
in the future.

When to Extend the Schema
Modifying the schema is a major change, with implications throughout the directory. It is recommended that you modify the schema
only when it is absolutely necessary. Many schema modifications cannot be reversed, so you must make sure that changes are planned
and well thought out before they are implemented. Inconsistencies in the schema can cause significant problems that impair or disable
Active Directory. These problems might or might not be evident immediately.

Planning for schema modification involves examining the default schema that comes with Active Directory to verify that there is no way
to use the existing classes or attributes for your needs. It is then necessary to understand the types of modifications that can be made
and, conversely, that cannot be changed. The following are the modifications that can be made to the schema:

l Creating classes.

l Modifying existing classes.

l Creating attributes.

l Modifying existing attributes.

l Deactivating classes and attributes.

There are three ways to effectively add a new class:

l Extending an existing class by adding attributes or additional possible parents.

l Deriving a new subclass from an existing class. The subclass has all the attributes of the original class and any additional attributes
that you specify.

l Creating an entirely new class with any attributes that you want to assign.

Page 10 of 25Chapter 4 - Active Directory Schema

16/08/2004ms-help://MS.TechNet.2004JUL.1033/win2ksrv/tnoffline/prodtechnol/win2ksrv/reskit/distsys/part1/dsgch04.htm

You need to extend an existing class when the following conditions apply:

l The existing class needs additional attributes but otherwise meets your needs. For example, you might want to add a
purchasingLimit attribute to the User class and add it to the user object for people who are cost center managers and have
purchasing authority.

l You have no need to identify the extended class as a distinct class from the original class.

l You want to use the existing Active Directory Users and Computers console in MMC to manage the extended attributes of the
objects. This requires the addition of property pages to the set defined for the object you are extending.

Derive a subclass from an existing class when the following conditions apply:

l The existing class needs additional attributes but otherwise meets your needs.

l You want to identify the extended class as a distinct class from the original class.

l You want to use the existing Active Directory Users and Computers console in MMC to manage the extended attributes of the
objects.

How to Extend the Schema
After you have decided that you have to make changes to the schema and you have carefully planned the types of changes you are
going to make, you can proceed. Because this is an extremely significant operation, and not without the possibility of causing serious
problems, Windows 2000 has three safety features, or interlocks, that control modification of the schema:

l By default, schema modification is disabled on all domain controllers. Use the Active Directory Schema console on a domain
controller to permit write access to the schema on that domain controller.

l The schema object is protected by the Windows 2000 security model. Therefore, administrators must be given explicit permissions
or be a member of the Schema Administrators group (Schema Admins in the user interface) to effect changes to the schema.

l Only one domain controller in the enterprise, the one holding the Schema Master Role, is allowed to write to the schema. This role
is one example of an FSMO role.

Installation of Schema Extensions
The recommended practice is to strictly control the schema updates at most customer sites. If a service requires schema extensions,
you must be able to install them separately by using one of the following methods

l Extending the schema by using LDIF scripts. This allows customers to update the schema separately and in advance of the rest of
the installation.

l Extending the schema programmatically.

In addition to providing a separate installation procedure for schema extensions, it is recommended that the nature of the schema
extensions be clearly documented. The documentation needs to contain the following:

l A statement that describes the authority from which your object identifier prefix was obtained.

l The common-name (cn), the LDAP-Display-Name, the object identifier, and the description of each new class and attribute and its
expected use. Also answer the following questions:

¡ Is the attribute configured for replication to Global Catalog servers?

¡ Is the attribute configured for indexing?

¡ What are the expected update frequency and expected size of the attribute, which allows the customer to make calculations of
replication impact?

¡ What are the rangeLower and rangeUpper values?

l A class hierarchy showing newly created classes.

l If defined, the values for the Default-Security-Descriptor and the NT-Security-Descriptor.

The schema installation program must allow the user to exit the program prior to your making any changes to the schema.

Specify the Schema-ID-GUID

Specify the schemaIDGUID when you create attributes or classes in Active Directory. The schemaIDGUID is a globally unique identifier
(GUID) that uniquely identifies all classes and attributes in the schema. Unlike object identifiers, which are issued by a central
authority, a special algorithm generates GUIDs. SchemaIDGUIDs are used in ACLs to provide attribute-specific or class-specific
privileges.

Naming

When you modify the schema, you must adhere to the following rules with respect to specifying the relative distinguished name
attribute (which is common-name [cn]) and the LDAP display name (lDAPDisplayName).

Common-Name (cn)

l Choose a company prefix. This section of the prefix must be the registered DNS domain name of the company and the current year
(four digits, separated by a hyphen (-).

l Make the next token in the cn a hyphen (-).

l Choose a product-specific prefix. This section of the name must be unique within your company and a succinct identification of the
product and needs to begin with an uppercase letter. The letters in the remainder of the prefix can be uppercase or lowercase as
you deem appropriate.

l Make the next token in the cn a hyphen (-).

l Make the next section of the cn the name of the attribute or class separated by hyphens.

LDAP-Display-Name

l Use the Common-Name (cn) as the starting point for the LDAP-Display-Name (lDAPDisplayName).

l Make the first character LDAP-Display-Name lowercase.

l Make the character that immediately follows each hyphen (-) uppercase.

l Remove all hyphens that follow the product-specific section of the prefix except for the hyphen that immediately follows this
section.

Table 4.6 illustrates the naming rules as they are applied to the Common-Name (cn) and the LDAP-Display-Name (lDAPDisplayName):

Table 4.6 Naming Rules

Page 11 of 25Chapter 4 - Active Directory Schema

16/08/2004ms-help://MS.TechNet.2004JUL.1033/win2ksrv/tnoffline/prodtechnol/win2ksrv/reskit/distsys/part1/dsgch04.htm

Modifying the Schema

To allow a domain controller to modify the schema, use the Active Directory Schema console in MMC on the selected server.

Note Because of the serious nature of schema modification, the Active Directory Schema MMC snap-in is not listed with the default
MMC snap-ins that are provided with Windows 2000 Server. To make it appear in the list of available MMC snap-ins, you must run
Regsvr32 on the dynamic-link library (DLL) (Schmmgmt.dll) from the command prompt.

To enable schema modification

1. Open the Active Directory Schema console in MMC.

2. Right-click Active Directory Schema (Manager), and select Operations Master.

3. Select The Schema may be modified on this server check box, and then click OK.

The value of the The Schema may be modified on this server check box is stored in the registry in the Schema Update Allowed
entry (in HKEY_LOCAL_MACHINE \SYSTEM \CurrentControlSet \Services \NTDS \Parameters). Active Directory adds this entry to the
registry when you use the Active Directory Schema console to change the default value.

Caution Do not use a registry editor to edit the registry directly unless you have no alternative. The registry editors bypass the
standard safeguards provided by administrative tools. These safeguards prevent you from entering conflicting settings or settings that
are likely to degrade performance or damage your system. Editing the registry directly can have serious, unexpected consequences that
can prevent the system from starting and require that you reinstall Windows 2000. To configure or customize Windows 2000, use the
programs in Control Panel or MMC whenever possible.

Schema Administrators Group

To modify the schema, you must use an account that is a member of the Schema Admins group. By default, the only member in that
security group is the Administrator account in the root domain of the enterprise. If you want to add other accounts, you have to add
them explicitly.

Caution Membership in the Schema Admins group must be highly restricted to prevent unauthorized access to the schema because
modifying the schema improperly can have serious consequences.

One way to verify that an account is a member of the Schema Admins group is to use the Active Directory Users and Computers
console in MMC.

To verify that an account is a member of Schema Administrators

1. Open the Active Directory Users and Computers console.

2. Expand the domain for the account by clicking the plus sign (+) next to it.

3. Double-click the Users folder.

4. Double-click the Schema Admins security group, and then click the Members tab.

5. If the account is not listed under Members, click Add.

6. Select an account from the displayed list, or type the name of the account.

7. Click Add, and then click OK.

Schema FSMO Role

Active Directory performs schema updates in a single-master fashion to prevent conflicts. Simultaneous schema updates on two
different computers might conflict with each other. The one domain controller in the enterprise that is allowed to perform schema
updates at any specific time is referred to as the schema master. Only one domain controller in the entire enterprise, the domain
controller holding the schema master role, accepts updates to schema objects.

Note To update the schema, the domain controller holding the schema master role must be online.

You can change the domain controller that serves as the schema master at any time according to your needs. This is what is meant by
the word "flexible" in FSMO. The current schema master in the enterprise is identified by the value of the fSMORoleOwner attribute on
the Schema container of the domain. By default, the first domain controller that is installed in the enterprise is the initial schema
master.

Although the domain controller that is the current FSMO Role Owner for schema operations is the only one that can make the actual
schema modifications, you do not have to be connected to that domain controller when you make schema modifications. If you are
connected to a domain controller that does not have that role, it generates a referral to the current FSMO Role Owner to process the
modifications.

If you want to do so, you can transfer the role of schema master to another domain controller by using the Active Directory Schema
console in MMC.

To view or change the current schema master by using the Active Directory Schema console in MMC

1. Open MMC, and install the Active Directory Schema snap-in.

2. Right-click the Active Directory schema, and then click Operations Master.

3. The Current Operations Master that is displayed is the schema master.

To retain the current schema master, click OK.

– Or –

To change the server that is the current FSMO Role Owner for the schema, click Change.

If the current domain controller (the one that is listed in Current Focus) is also the current operations master, you must use the
Active Directory Tree console to focus on another domain controller before you can change the operations master. This is because
you must be connected to the domain controller that you want to have as the FSMO Role Owner. You cannot direct the connected

Common-Name (cn) LDAP-Display-Name (lDAPDisplayName)

Microsoft-Com-1999-MQ-Attribute-1 Microsoft-Com-1999-mQAttribute1

Microsoft-Com-1999-EXCHANGE-Attribute-2 Microsoft-Com-1999-exchangeAttribute2

Page 12 of 25Chapter 4 - Active Directory Schema

16/08/2004ms-help://MS.TechNet.2004JUL.1033/win2ksrv/tnoffline/prodtechnol/win2ksrv/reskit/distsys/part1/dsgch04.htm

domain controller to make another domain controller the FSMO Role Owner.

For more information about using the Active Directory Schema console, see "Modifying the Schema" earlier in this chapter.

You can also use the command-line tool Ntdsutil to transfer the Schema FSMO. The tool resides in the \%SystemRoot%\System32
folder. For more information about transferring FSMO roles by using Ntdsutil, see "Managing Flexible Single-Master Operations" in this
book.

To change the schema master by using Ntdsutil

1. Start Ntdsutil by typing ntdsutil at the command prompt. (Note that at any prompt in this tool, you can type a question mark (?)
to see the list of valid commands for that prompt.)

2. At the Ntdsutil prompt, type:

roles

3. At the fsmo maintenance prompt, type:

connections

4. To display the current connection information, at the server connections prompt, type:

info

If necessary, type the appropriate command to connect to the server that is to become the schema master. (Use the ? command to
see a list of valid commands.)

5. To return to the fsmo maintenance prompt, type:

quit

6. To do a graceful transfer of the Schema FSMO, type:

transfer schema master

You can also perform the schema master role transfer in a program. Before a program can make changes to the schema, it must check
explicitly whether the domain controller is the current schema master and, if it is not, explicitly request the transfer operation.

To understand the transfer process, consider a scenario in which computer A is the current FSMO Role Owner and computer B must
perform some schema updates. To request an FSMO Role Owner transfer from computer A, a program must add the operational
attribute becomeSchemaMaster with value of 1 to the rootDSE (that is, to the object with a blank distinguished name) on computer B.
It is an operational attribute that is never defined in the schema and does not require any storage. Generally, when you set an
operational attribute, you trigger some immediate action on the server.

In this case, the action taken by the server (computer B) is its sending out a request to computer A for a role transfer. Computer A,
upon receiving such a request, changes the fSMORoleOwner attribute on its Schema container to the name of computer B and sends
this new attribute value back to computer B. It also sends back any schema changes that were implemented on computer A but were
not yet incorporated by computer B. (This kind of discrepancy is possible as a result of replication latencies.) Computer B, upon
receiving the reply from computer A, applies all changes that were sent back from computer A and, in the process, becomes the current
schema master.

Note Computer B, the new schema master, now has all previous schema updates in the enterprise and, hence, the latest version of the
schema.

If the old schema master is unavailable or has crashed, you can forcibly transfer (seize) the schema FSMO so that a new domain
controller can make schema changes. However, it is recommended that you take this step only as a last resort. When the schema
master is forcibly transferred to a new domain controller, recent schema changes that were made at the old schema master might not
be propagated to the new schema master and might be lost. The transfer also can result in conflicting updates at other domain
controllers in the forest, which might require an extensive offline cleanup of the directory.

Caution Seizing the schema master is a drastic step that you must consider only when the current schema master is no longer able to
function and is never going to be available again. Before you seize the current schema master, remove it from the network. Verify that
the domain controller that seizes the role is fully up-to-date with respect to updates performed on the previous role owner.

To seize the schema master by using Ntdsutil

1. Start Ntdsutil by typing ntdsutil at the command prompt. (Note that at any prompt in this tool, you can type a question mark (?)
to see the list of valid commands for that prompt.)

2. At the Ntdsutil prompt, type:

roles

3. At the fsmo maintenance prompt, type:

connections

4. To display the current connection information, at the server connections prompt, type:

info

If necessary, type the appropriate command to connect to the server that is to become the schema master. (Use the ? command to
see a list of valid commands.)

5. To return to the fsmo maintenance prompt, type:

quit

6. To perform a forced transfer (seizure) of the schema master, type:

seize schema master

For more information about FSMOs, see "Managing Flexible Single-Master Operations" in this book.

Order of Processing When Extending the Schema

If you decide to extend the schema either programmatically or by using scripts, apply updates in the following order:

1. Target your update at the FSMO Role Owner. Bind to the schema on the domain controller that is the schema master. Avoid
unnecessarily changing the schema master role between domain controllers. Only one domain controller is allowed to perform
critical operations like updating the schema at any one time. This domain controller is known as the FSMO Role Owner. If you have
more than one Windows 2000 server on your network, your current server might not be the FSMO Role Owner. You have to ensure
that you target your update at the FSMO Role Owner.

Page 13 of 25Chapter 4 - Active Directory Schema

16/08/2004ms-help://MS.TechNet.2004JUL.1033/win2ksrv/tnoffline/prodtechnol/win2ksrv/reskit/distsys/part1/dsgch04.htm

2. Ensure that you have sufficient administrative privileges to perform the schema update. Check the allowedChildClassesEffective
property of the Schema container to see if you can create attributes or classes. If attributeSchema and classSchema are not values
in that property, you do not have sufficient rights to add attributes or classes to the schema. Only members of the Schema
Administrators group are allowed to alter the contents of the schema. You must ensure that your user account is a member of this
group. (The Administrator account is automatically a member of the Schema Administrators group.)

3. Create the registry entry that allows write access to the schema. By default, access to the schema is read-only. This entry, known
as the safety interlock, can be found in the registry in HKEY_LOCAL_MACHINE \SYSTEM \CurrentControlSet \Services \NTDS
\ParametersSchema Update Allowed. This entry must exist and its value must be nonzero for schema updates to take place.
Check that the safety interlock is engaged before removing it. Note the value that you found for this entry, and make sure to leave
the value in the same state afterward. Note that you only have to create the safety interlock on the server that holds the FSMO
role.

4. Add your new attributes.

5. Add your new classes.

6. Add attributes to classes. Any new attributes need to be referenced by object identifier because their names are not going to be
present in the cache yet. Unless you trigger a schema cache reload after you add new attributes, an attempt to use an attribute by
name is going to fail.

7. Each domain controller updates its schema cache five minutes after a schema change. If the extensions are going to be used within
five minutes, you must trigger a cache reload.

8. If you had to create the safety interlock before you added your new classes or attributes, it is recommended that you re-apply the
safety interlock again after you add them.

9. If you are installing a schema extension by programmatic means (script or ADSI), you must make sure that the extension is
provided as a separately installable routine. This means that you must be able to do it separately from the application installation
process.

10. Before you create a program to perform a schema extension, see the Microsoft Platform SDK link on the Web resources page at
http://windows.microsoft.com/windows2000/reskit/webresources . Follow the links to "Active Directory Programmer's Guide" and
then to "Schema Extensibility."

Note A cache update is not necessary if the schema extensions are not to be used immediately. Depending on system load, the
extensions appear in the schema cache in approximately five minutes.

Adding and Modifying Schema Objects
Because schema objects are another kind of directory object, you can use the same methods that you would use to add or modify any
directory object. Windows 2000 provides an administrative tool called Active Directory Schema that provides a straightforward user
interface, and, of course, you have the option of making changes to the schema programmatically.

Adding an Attribute

It is recommended that you try to use existing attributes wherever possible. If you decide that you need to create a new attribute,
however, you must adhere to the following guidelines:

l Use cn as the name (relative distinguished name) attribute; this is the default for most classes, including those derived directly
from top. Because cn is an indexed attribute, it allows an efficient search for your object by name.

l Large multivalue attributes are costly to store and retrieve; it is recommended that you avoid using them. Active Directory
implements an LDAP control to allow an incremental read of large multivalued attributes, but not all LDAP clients know how to use
this control.

l Remember that attributes are "flat," which means that there is no implied substructure to an attribute. All attributes in a specific
class must relate directly to instances of that class. This is also good data normalization practice.

To add a new attribute to the schema, you must create a new attribute object. First create the Active Directory safety interlocks as
described in "How to Extend the Schema" earlier in this chapter. Then do the following:

1. Choose a name for the attribute.

2. Obtain a valid object identifier from an issuing authority.

3. Determine the syntax of the attribute.

4. Decide whether the attribute needs to be a single-value or multivalue attribute.

5. Decide whether and how the attribute needs to be indexed.

6. Decide whether the attribute needs to be replicated to the Global Catalog.

For every attribute that you define, some attributes are mandatory and some are optional; these attributes are listed in Table 4.7 and
Table 4.8.

Table 4.7 Mandatory Attributes for New Attribute-Definition Objects

Table 4.8 Optional Attributes for New Attribute-Definition Objects

Mandatory Attributes Default Status

cn No default. Administrator must specify a name.

objectClass No default. Administrator must specify as attributeSchema.

attributeID No default. Administrator must specify as an object identifier string.

attributeSyntax No default. Administrator must specify one of the syntaxes that are recognized by Active Directory.

oMSyntax No default. Administrator must specify an oMSyntax that matches the corresponding attribute
syntax.

schemaIDGUID It is defaulted to a value generated by uuidgen if not specified.

nTSecurityDescriptor Defaults if the administrator does not specify. The default value depends on the
defaultSecurityDescriptor attribute of the attributeSchema class.

isSingleValued Defaults to FALSE if not specified by the administrator.

lDAPDisplayName Defaults from the common name if not specified by the administrator.

Optional Attributes Default Status

Page 14 of 25Chapter 4 - Active Directory Schema

16/08/2004ms-help://MS.TechNet.2004JUL.1033/win2ksrv/tnoffline/prodtechnol/win2ksrv/reskit/distsys/part1/dsgch04.htm

As an example, suppose you want to add a new attribute called userName. Each instance of a userName attribute stores exactly one
Unicode string of at least one character and not more than 1,000 characters. In this case, you would add the following attribute
definition:

l cn = userName

l objectClass = attributeSchema

l attributeID = 1.2.567.8901234.5.6.879 (Valid object identifier value)

l attributeSyntax = 2.5.5.12 (Syntax value for Unicode string)

l oMSyntax = 64 (Syntax value for Unicode string)

l isSingleValued = TRUE (The intention is to store exactly one value.)

l rangeLower = 1 (Minimum length of the string)

l rangeUpper = 1000 (Maximum length of the string)

Modifying an Attribute

To modify an attribute, modify the existing attribute-definition object that represents the class. For reasons of consistency and security,
some attributes of each attribute-definition object are designated as system-only. You cannot modify system-only attributes of an
attribute object, not even for new classes that you originally created. System-only attributes are designated by having the systemOnly
attribute of the attribute set to TRUE.

The following attributes of an attribute-definition object are systemOnly and, thus, cannot be modified:

l attributeID

l schemaIDGUID

l attributeSyntax

l oMSyntax

l isSingleValued

l extendedCharsAllowed

l systemOnly

l objectClass

l instanceType

Adding a Class

To add a new class, you add a new schema-definition object with all the desired attributes. After you remove the Active Directory safety
interlocks, as described in "How to Extend the Schema" earlier in this chapter, make sure that you have done the following before you
add a class:

1. Choose a name for the class.

2. Obtain a valid object identifier from an issuing authority.

3. Determine the object class category.

4. Determine the class from which this new class inherits information.

For every class, some attributes are mandatory and some are optional, as shown in Table 4.9 and Table 4.10. If you do not define
values for some of these attributes, they are given default values.

Table 4.9 Mandatory Attributes for New Class-Definition Objects

Table 4.10 Optional Attributes for New Class-Definition Objects

rangeLower No default. The administrator must specify a value.

rangeUpper No default. The administrator must specify a value.

isMemberOfPartialReplicaSet Defaults to FALSE if not specified by the administrator.

searchFlags No default. The four currently defined bits for this attribute are as follows: 1 = Index over attribute
only; 2 = Index over container and attribute; 4 = Add this attribute to the Ambiguous Name
Resolution (ANR) set (needs to be used in conjunction with 1); 8 = Preserve this attribute on logical
deletion (that is, make this attribute available on tombstones).

Attribute Default Status

cn No default. Administrator must specify a name.

objectClassCategory Defaults to 88 class because it is assumed to be a class with no category. Other options are
Structural, Abstract, or Auxiliary.

governsID No default. Administrator must specify an object identifier string.

possSuperiors No default. Administrator must specify the structural class or classes that are legal parents of
instances of this class.

subClassOf No default. Administrator must specify a value.

schemaIDGUID Defaults if not specified. The default value is automatically generated by the system.

nTSecurityDescriptor Defaults if not specified. The default value depends on the default SecurityDescriptor of the
classSchema class.

lDAPDisplayName Defaults from the common name if not specified.

Optional Default Status

defaultSecurityDescriptor If there is no default security descriptor specified, the default security descriptor of the
immediate superclass is used.

auxiliaryClass The list of additional (auxiliary) classes from which this class is derived.

Page 15 of 25Chapter 4 - Active Directory Schema

16/08/2004ms-help://MS.TechNet.2004JUL.1033/win2ksrv/tnoffline/prodtechnol/win2ksrv/reskit/distsys/part1/dsgch04.htm

For a new class, you must define cn, objectClass, and governsID. However, to make the new class actually useful, you probably also
want to define some attributes in mustContain, mayContain, and possSuperiors. Any attributes you specify when you add a new class
must already exist. So, if you want to add a new class with new attributes, you must add the new attributes to the schema first.

When you add a new class, the object identifier specified in governsID must be unique, not only in your enterprise but also globally.

Note The system imposes rules that restrict the addition of schema objects.

Suppose you want to add a new class "Friend" to store information about a friend. Any Friend object must contain the name of the
friend and might also contain her address or phone number. And because a friend is a person, you want objects of the Friend class to
have the same mandatory attributes, optional attributes, and directory superiors as the Person class you have already defined. In this
case, you add the following class definition:

l cn = Friend

l objectClass = classSchema

l subClassOf = Person

l governsID = 1.2.345.678901.2.3.45 (valid object identifier value)

l mustContain = givenName, sn

l mayContain = Address, phone-number

Modifying a Class

To modify a class, modify the existing class-definition object that represents the class. Some attributes of each class are designated as
system-only, for consistency and security reasons. You cannot modify system-only attributes of a class-definition object, not even for
new classes that you originally created. System-only attributes are designated by having the systemOnly attribute of the attribute set
to TRUE.

The following attributes of a class-definition object are system-only attributes and, thus, cannot be modified:

l governsID

l schemaIDGUID

l rDNAttID

l subClassOf

l systemMustContain

l systemMayContain

l systemPossSuperiors

l systemAuxiliaryClass

l objectClassCategory

l systemOnly

l objectClass

l instanceType

System Checks and Restrictions Imposed on Schema Additions and Modifications
When you try to add or modify a class or attribute, Active Directory performs some checks to make sure that the changes do not cause
inconsistencies or other problems in the schema. The checks can be divided into two classes:

l Consistency checks

l Safety checks

Consistency checks maintain the consistency of the schema. Safety checks reduce the possibility of a schema update by one application
breaking another application.

Consistency Checks

For both class and attribute changes, the system makes sure that the values of lDAPDisplayName and schemaIDGUID are unique and
also that lDAPDisplayName is valid.

The class-schema object addition and modification extensions are successful only if the new class definition passes all of the following
tests as well as the normal extension checks.

l The value of governsID must be unique.

l All attributes that are defined in the systemMayContain, mayContain, systemMustContain, and mustContain lists must already exist.

l All classes that are defined in the subClassOf, systemAuxiliaryClass, auxiliaryClass, systemPossSuperiors, and possSuperiors lists
must already exist.

l All classes in the systemAuxiliaryClass and auxiliaryClass lists must have either 88 class or Auxiliary class specified as their
objectClassCategory.

l All classes in the systemPossSuperiors and possSuperiors lists must have either 88 class or Structural class specified as their
objectClassCategory.

l Classes in the subClassOf list must follow certain X.500 specifications for inheritance hierarchies. These specifications are that
Abstract classes can inherit only from other Abstract classes, Auxiliary classes cannot inherit from Structural classes, and Structural
classes cannot inherit from Auxiliary classes.

l The attribute specified in the rDNAttID attribute must have Unicode-string as its syntax and be single-valued.

For attribute changes, the system also checks the following:

l The value of attributeID must be unique.

l The value of mAPIID, if any, must be unique.

l If rangeLower and rangeUpper are present, rangeLower must be smaller than rangeUpper.

l The values of attributeSyntax and oMSyntax must match, as shown in Table 4.11.

l If the attribute is object-syntaxed (oMSyntax=127), it must have the correct oMObjectClass, as shown in Table 4. 12.

l The linkID, if any, must be unique. In addition, a back link must have a corresponding forward link. (For more information about
links, see "Active Directory Data Storage" in this book.)

Page 16 of 25Chapter 4 - Active Directory Schema

16/08/2004ms-help://MS.TechNet.2004JUL.1033/win2ksrv/tnoffline/prodtechnol/win2ksrv/reskit/distsys/part1/dsgch04.htm

Note A complete syntax specification consists of both the attributeSyntax and the oMSyntax. Hence, whenever more than one
oMSyntax can be used with an attributeSyntax, the correct oMSyntax must be used.

Table 4.11 Values of attributeSyntax and Corresponding Syntaxes

attributeSyntax Value1 Matching oMSyntax

2.5.5.1 127 [Object(DN-Binary)]

2.5.5.2 6 [String(Object-Identifier)]

2.5.5.3 27 [String(Case sensitive)]

2.5.5.4 20 [String(Case insensitive)]

2.5.5.5 19 [String(Printable)], 22 [String(IA5)]

2.5.5.6 18 [String(Numeric)]

2.5.5.7 127 [Object(ORName)] or [Object(DNBinary)]. Distinction is oMObjectClass value.

2.5.5.8 1 [Boolean]

2.5.5.9 2 [Integer], 10 [Enumeration]

2.5.5.10 4 [String(Octet)]

2.5.5.11 23 [String(UTC-Time)], 24 [String(Generalized-Time)]

2.5.5.12 64 [String(Unicode)

2.5.5.13 127 [Object(Presentation-Address)]

2.5.5.14 127 [Object(Access-Point)] or [Object(DN-String)]. Distinction is oMObjectClass value

2.5.5.15 66 [String(NT-Sec-Desc)]

2.5.5.16 65 [LargeInteger)]

2.5.5.17 4 [String(Sid)]

For attributes with oMSyntax=127, the oMObjectClass also must be correctly specified according to the attributeSyntax. For attributes
with any other oMSyntax value, it is not relevant and need not be specified. Because an oMObjectClass, being a binary value, is
somewhat inconvenient to specify and because in most cases there is a one-to-one mapping between the attributeSyntax and
oMObjectClass, the value defaults if none is specified by the user. There are a couple of cases where the mapping is not one-to-one,
however, and the value defaults to the more common value. Table 4.12 is a list of the oMObjectClass values that correspond to the
different attributeSyntax values for attributes with oMSyntax=127.

Table 4.12 Values of attributeSyntax and Corresponding oMObjectClass Values

1The oMSyntax names are specified with the syntax numbers to enable the correct choice.

attributeSyntax oMObjectClass Values1

2.5.5.1 \x2B0C0287731C00854A [Object(DS-DN)].

2.5.5.7 \x56060102050B1D [Object(OR-Name)] or
\x2A864886F7140101010B [Object(DN-Binary)].

 Defaults to Object(OR-Name) if none specified by the user.

2.5.5.13 \x2B0C0287731C00855C [Object(Presentation-Address)].

2.5.5.14 \x2B0C0287731C00853E [Object(Access-Point)] or
\x2A864886F7140101010C [Object(DN-String)].

 Defaulted to Object(Access-Point) if none specified by the user.

Safety Checks

The purpose of the safety checks is to reduce the possibility of schema updates by one user or application breaking another application.
These checks are necessary because multiple applications might share a schema definition.

When you modify existing schema objects, the modifications are subject to certain restrictions enforced by Active Directory. In some
cases, these restrictions are determined according to whether the objects are part of the original schema or whether they have been
added after the original installation. So the schema objects are really divided into two categories:

l Category 1 objects

l Category 2 objects

Category 1 objects are the default base schema objects that are included with Windows 2000 in the base schema. Category 2 objects
are objects that are added subsequently to the schema by administrators or applications. You can determine the category in which an
object is located by looking at the second bit (starting at the least significant bit) in the systemFlags attribute. If the bit is set, it has the
value FLAG_SCHEMA_BASE_OBJECT, which indicates that the object is part of the base schema, that is, category 1. If this bit is not set
or the attribute is not present, the object is category 2.

The following restrictions apply to both category 1 and category 2 schema objects:

l You cannot add a new mustContain attribute to a class either directly or through inheritance by adding an auxiliary class.

l You cannot add or delete any mustContain attribute of a class either directly or through inheritance.

The following restrictions apply to category 1 schema objects:

l You cannot change the rangeLower and rangeUpper of an attribute.

l You cannot change the atributeSecurityGUID of an attribute.

l You cannot deactivate a class or an attribute (make it defunct).

1The syntax names are specified in brackets for easy reference.

Page 17 of 25Chapter 4 - Active Directory Schema

16/08/2004ms-help://MS.TechNet.2004JUL.1033/win2ksrv/tnoffline/prodtechnol/win2ksrv/reskit/distsys/part1/dsgch04.htm

l You cannot change the lDAPDisplayName of a class or an attribute.

l You cannot rename a class or an attribute.

l You cannot change the defaultObjectCategory of a class.

l You cannot change the objectClassCategory of instances of a class.

Deactivating Schema Objects
You cannot deactivate schema objects that are part of the default schema that ships with Active Directory. You can only deactivate
schema objects that have been added to the default schema.

You might want to delete schema classes or attributes that are not needed in your organization. However, deleting schema objects
raises some serious issues. For instance, what would happen to any other schema objects that use the class or attribute that you have
deleted? Because doing an enterprise-wide check and cleanup might prove very time-consuming and costly, Active Directory does not
support the actual deletion of schema objects. Rather it provides a mechanism for deactivating schema objects, also referred to as
making them defunct. When you deactivate a schema object, you make it unusable for most purposes, and you get most of the benefits
of deletion.

A class or an attribute can be deactivated by setting the Boolean attribute isDefunct to TRUE on the schema object. At any point in
time, there are a number of ways to identify the defunct schema objects in the system. Programmatically, the user can search for all
schema objects that have the attribute isDefunct set to TRUE (or if a particular schema object has isDefunct set to TRUE, to check
whether the object is defunct). You can also use the Search function of the Ldp tool to search the schema with a filter set to
(isDefunct=TRUE). For more information about the Ldp tool, see "Active Directory Diagnostics, Troubleshooting, and Recovery" in this
book.

Note There is currently no method in the user interface for viewing defunct schema objects. To do this, you can use only one of the
methods described in the preceding paragraph.

As with additions or modifications of classes or attributes, there are some special validation checks performed when a class or an
attribute is made defunct. This is to ensure the consistency of the schema. In particular, on an attempt to make a class defunct, Active
Directory verifies that the class is not used in the subClassOf, auxiliaryClass, or possSuperiors list of any existing nondefunct class.
Similarly, on an attempt to make an attribute defunct, Active Directory checks that the attribute is not used in the mustContain or
mayContain of any existing nondefunct class.

A defunct schema object can be resurrected, that is, made nondefunct again, by either removing the isDefunct attribute from the object
or by setting the value of the isDefunct attribute to FALSE. This can also be done easily by using the Active Directory Schema console.
Because making a defunct schema object nondefunct is similar to adding a new schema object as far as subsequent schema updates
go, Active Directory performs the same validation checks here as it does on the addition of a new schema object.

To reactivate a class or attribute by using the Active Directory Schema console

1. Open the Active Directory Schema console.

2. Double-click the Classes folder or Attributes folder to display the schema classes or attributes.

3. Right-click the class or attribute that you want, and then click Properties.

4. Click the Deactivate this class (attribute) check box to clear it, and then click OK.

To reactivate a class or attribute by using the ADSI Edit console

1. Open ADSI Edit.

2. Right-click ADSI Edit, and then click Connect to.

The Connection dialog box is displayed, as shown in Figure 4.3.

Figure 4.3 Connection Dialog Box

3. In the Connection Point box, make sure that Naming Context is selected.

4. In the Naming Context box, select Schema, and then click OK.

5. In the console tree, double-click My Connection.

The Schema folder is displayed.

Page 18 of 25Chapter 4 - Active Directory Schema

16/08/2004ms-help://MS.TechNet.2004JUL.1033/win2ksrv/tnoffline/prodtechnol/win2ksrv/reskit/distsys/part1/dsgch04.htm

6. Double-click the Schema folder to display a list of attributes and classes in the navigation pane. This might take a few moments.

7. Right-click the class or attribute that you want, and then click Properties.

8. In the Select which properties to view box, select Optional, and then select isDefunct in the Select a property to view box.

9. In the Test Attribute Properties dialog box (shown in Figure 4.4), type:

FALSE

10. Click Set, and then click OK.

If your browser does not support inline frames, click here to view on a separate page.

Figure 4.4 Test Attribute Properties Dialog Box

A schema object can be reactivated at any time. The only restriction imposed is that in any such modification, the isDefunct attribute is
the only attribute present in the modify call. This is done to achieve clean semantics.

The only modification that is allowed on a defunct class or attribute is to modify the isDefunct attribute on it to make the class or
attribute active again if this is necessary. No other modifications are allowed on a defunct class or attribute. The assumption is that
because the object has been deactivated, it is not going to be used for any new modifications; so there is no need to modify it.

Disabling Existing Classes and Attributes
Disabling schema classes and attributes is subject to the following restrictions:

l You cannot disable a category 1 class or attribute.

l You cannot disable an attribute that is a member of a class that is not also disabled. This is because an attribute might be a "must
have" for the (not disabled) class and disabling the attribute prevents new instances of the class from being created.

To disable an attribute, set the isDefunct attribute of its attributeSchema object to TRUE. When an attribute is disabled, new instances
of the attribute can no longer be created. To re-enable the attribute, set the isDefunct attribute to FALSE.

To disable a class, set the isDefunct attribute of its classSchema object to TRUE. When a class is disabled, new instances of the class
can no longer be created. To re-enable the class, set the isDefunct attribute to FALSE.

Effect of Deactivating a Schema Object on All Objects

After a class A is made defunct, any subsequent addition or modification of instances of A fails as if A has been deleted from the
system; that is, the same error codes are returned as if A never existed at all. For example, creating a new instance of A fails and trying
to modify or rename an existing instance of A fails. Similarly, if an attribute B is made defunct, B is treated as nonexistent for new
object creations and attempts to modify (add or replace) the value of B in an existing object fail.

However, any search or deletion in an object behaves as if no schema objects have been made defunct, the only exception being that
schema objects are not allowed to be deleted. So in the preceding example, the user still is able to search for all existing instances of A
and delete them if necessary. Similarly, the user can search for all instances that have a value for the attribute B and delete B from
such an existing object. This behavior is retained to allow the user to clean up if necessary after a schema object is made defunct. For
example, the administrator can decide that a class is not needed anymore and make it defunct so that no one can use it for any
modifications. The existing instances of the class can then be cleaned up by searching for all instances and deleting them. Active
Directory does not perform any cleanup after a schema object is made defunct.

Similarly, an attribute can be made defunct, and all its uses can be cleaned up. Note that you can delete only the entire attribute from
the object, not the values of the attribute. For example, in the preceding example, if B is a multivalue attribute and an object had more
than one value for B, trying to delete a value of B from the object fails. This behavior is enforced because there is no reason not to
delete the attribute totally when cleaning up a defunct object.

Effects of Deactivating a Schema Object on Schema Updates

In addition to the effects on the instances of the schema object, there are some additional effects on subsequent schema updates when
you make a schema object defunct. The additional effects arise mostly because schema updates are subject to special validation checks
to which nonschema object updates are not subjected. If a class A or attribute A is made defunct, subsequent schema updates show the

Page 19 of 25Chapter 4 - Active Directory Schema

16/08/2004ms-help://MS.TechNet.2004JUL.1033/win2ksrv/tnoffline/prodtechnol/win2ksrv/reskit/distsys/part1/dsgch04.htm

following behaviors:

l No modifications are allowed on defunct classes or attributes. The only exception that is allowed is to modify the isDefunct attribute
on a defunct class A to make the class active again if required. The assumption is that because the class or attribute is made
defunct, it is not used for any new modifications. So there is not any need to modify it, except to make it active again if the
administrator decides later that it is needed.

l Validation checks that are performed when you add a new class or attribute or modify an existing nondefunct class or attribute treat
A as nonexistent. For example, if A is an attribute, trying to modify an existing nondefunct class B by adding mayContain=A fails
because the validation checks that are performed at schema modification time fail as if A did not exist. Or if A is a class, trying to
add a new class with subClassOf=A fails because A is treated as nonexistent by the validation checks performed during the addition
of the class. The exception is when you try to add or modify a class or attribute to have the same distinguished name, object
identifier, lDAPDisplayName, mAPIID, or schemaIDGUID as the defunct class A or attribute A; the operation fails. In this case, A is
treated as a nondefunct schema object to ensure that schema consistency is not violated.

This ability to make schema objects defunct can be very useful in different ways in production environments. Schema objects that are
no longer needed can be cleaned up by making them defunct. Then existing instances of those classes or attributes can be deleted if
desired. At the same time, if the same schema object is found to be of use later, it can be brought back quickly by modifying the object
by removing the isDefunct attribute on it. This also protects against the accidental removal of a schema object by mistake (by making it
defunct). The operation can be reversed easily with no side effects. Note that because Active Directory does not do any cleanup after a
schema object is made defunct, all instances of the schema object that was made defunct by mistake remain and become valid, normal
objects when the defunct schema object is made active again.

Issues Related to Modifying the Schema
When you modify the schema, you must be aware of the implications and of the potential problems that can arise. There are three main
issues involved with modifying the schema: replication, concurrency control, and handling invalid object instances.

Replication

Because the schema is replicated across all domain controllers in the forest, a schema update that is performed at one domain
controller is guaranteed to be propagated throughout the forest. This guarantees a schema that is consistent forest-wide. However,
because of replication latencies, there can be temporary inconsistencies.

For example, consider that a new class A is created at server X, and then an instance of this class (B) is created at the same server (X).
However, when the changes are replicated to another server Y, the object B is replicated out before the classSchema object A. When
the change arrives at server Y, the replication of B fails because Y's copy of the schema still does not contain the classSchema object A.
Hence, Y does not know about the existence of A.

Active Directory solves this problem in such scenarios by explicitly replicating the Schema container from the originating server when
such failures occur. Additionally, the replication of the Schema container triggers an immediate schema cache update on the target
server. Active Directory then re-replicates the object that failed. In the example, re-replication brings in classdefinition object A and
also puts it into the schema cache of Y. Retrying the replication of B now succeeds.

Concurrency Control

Active Directory must ensure that different program threads do not perform simultaneous, conflicting schema updates (such as when
one thread is deleting an attribute and another is adding it to the mayContain list of a class).

To ensure this, any thread that attempts to perform a schema update also automatically writes a special attribute on the Schema
container as part of the transaction. (Active Directory automatically causes the thread to write the attribute you do not have to do so in
your program code.) Only one thread can write this attribute at any one time. This method guarantees schema consistency, but it does
not guarantee which of the updates is successful. You must be aware of this when schema updates are made in a batch (such as in the
case of the installation of directory-enabled applications).

For example, consider a scenario in which two Active Directory–aware programs, A and B, are being installed simultaneously, each of
which creates several new schema objects. Because Active Directory creates one thread per object update, it is possible that some of
the objects in program A and some of the objects in program B get created (if the internal threads do not overlap), and then one of the
installations fails (because a thread for a schema object creation for program A overlaps with a thread for a schema object creation for
program B).

Assume that program A fails. Now running A from scratch again does not work because some of the objects that program A created are
already in the schema; trying to re-create them in the second run (existing objects) returns an error. Therefore, it is recommended that
programs that modify the schema not be run concurrently, unless provisions are made in the program to first check if the schema
update that is about to be made has already been made and then proceed accordingly.

Handling Invalid Object Instances

Schema update can make an existing instance of an object invalid. For example, suppose object X is an instance of class Y. Class Y has
an attribute, Z, in its mayContain list. Therefore, because object X is an instance of class Y, object X can have this attribute defined on
it. Assume that X does indeed have this attribute currently defined in it. Now a schema update is performed that modifies class Y by
deactivating attribute Z from its mayContain list. Note that this change makes the instance of object X invalid because X now has an
attribute, Z, that it is not allowed to have according to the class definition of Y (of which object X is an instance). Active Directory allows
the now-invalid objects to remain in the directory and ensures that they do not cause any problems in the rest of the schema. Active
Directory does not automatically clean up invalid objects, but invalid objects and attributes appear in searches and can be deactivated
manually.

Methods for Extending the Schema
Windows 2000 gives you some choices regarding the way you accomplish schema extension. You can import and export objects in a
batch mode by using each of these administrative tools: LDIF Directory Exchange (LDIFDE), CSV Directory Exchange (CSVDE), and
ADSI scripts. These tools enable you to administer large numbers of objects (such as users, contacts, groups, servers, and printers) in
one operation. By using these tools, it is possible to export Active Directory data to other applications and services and to import
information from other sources into Active Directory. These tools are installed automatically on all Windows 2000 servers. Or you can
perform schema extension programmatically by using ADSI Edit. You can also extend the schema from the user interface with the
Active Directory Schema console.

LDAP Data Interchange Format

The LDAP Data Interchange Format (LDIF) (file) format has a command-line utility called "LDIFDE" that allows you to create, modify,
and delete directory objects. It can be run on a Windows 2000–based server or copied to a Windows 2000–based workstation. For
example, LDIFDE can be used to extend the schema, export Active Directory user and group information to other applications or
services, and populate Active Directory with data from other directory services.

LDIF is an Internet standard for a file format to perform batch import and batch export operations for directories that conform to LDAP
standards. An LDIF file consists of a series of records that are divided by line separators. A record describes either a single directory

Page 20 of 25Chapter 4 - Active Directory Schema

16/08/2004ms-help://MS.TechNet.2004JUL.1033/win2ksrv/tnoffline/prodtechnol/win2ksrv/reskit/distsys/part1/dsgch04.htm

entry or a set of modifications to a single directory entry and consists of one or more lines in the file.

Using the LDIFDE Tool

The LDIFDE tool is executed from the command prompt. At the prompt, type the command LDIFDE and the appropriate parameters in
the following form:

LDIFDE [-i] [-f] [-s] [-c] [-v] [-t] [-d] [-r] [-p] [-l] [-o] [-m] [-n] [-j] [-g] [-k] [-a] [-b][-?][-u][-y]

Note A hyphen (-) is required before each parameter.

Table 4.13, Table 4.14, Table 4.15, and Table 4.16 contain descriptions of all of the parameters.

Table 4.13 LDIFDE Tool Basic Parameters

Table 4.14 LDIFDE Tool Export-specific Parameters

Basic
Parameters Value(s) to Specify Description

-i mode Specifies import mode. If this parameter is not specified, the default mode for
LDIFDE (and CSVDE) is export.

-f filename Identifies the import or export file name.

-s server name Specifies the domain controller to perform the import or export operation. If
this parameter is not specified, the operation communicates with the domain
controller of the domain to which the user is currently logged on.

-c from distinguished name
(string1)
to distinguished name (string2)

Replaces all occurrences of string1 with string2. This usually is used when
you are importing data from one domain to another and the distinguished
name of the export domain has to be replaced with that of the import
domain. This parameter is designed to support the import of data when the
receiving domain name is different than the exporting domain name.

-t port number Specifies a port number. The default LDAP port is 389. (The Global Catalog
port is 3268.)

-v verbose mode Sets verbose mode, which provides more detailed status description of the
import/export operation. If this parameter is not specified, the default is
nonverbose mode.

-? Help Use to display Help.

Export-specific
Parameters Value(s) to Specify Description

-d base distinguished name Sets the distinguished name of the search base for data export. If this
parameter is not specified, it defaults to the root of the domain.

-r LDAP filter Creates an LDAP search filter for data export. For example, to export all users
with your surname, the following filter could be used:
-r "(&(objectClass=user)(sn=yoursurname))".
Note that the default is (objectClass=*). For more information about LDAP
search filters, see "Name Resolution in Active Directory" in this book.

-p scope Sets the search scope. Values are: Base, OneLevel, or SubTree. If not
specified, the default is SubTree. For more information about the search scope,
see "Name Resolution in Active Directory" in this book.

-l LDAP attribute list Sets the list of attributes to return in the results of an export query. If this
parameter is omitted, all attributes are returned. For example, to retrieve only
the distinguished name, common name, first name, surname, and telephone
number of the returned objects, the following attribute list would be specified:
-l "distinguishedName, cn, givenName, sn, telephone".
(Note: Quotation marks around the list of attributes is optional.)

-o attributes in results Omits a list of attributes from the results of an export query. This is used when
exporting objects from Active Directory and then importing them into another
LDAP-compliant directory. Some attributes might not be supported in the
directory receiving the objects. For example, to omit whenCreated and
whenChanged, the following would be specified:
-o "whenChanged, whenCreated".
This parameter omits the attributes from the results. If not specified, all
attributes are included (Note: Quotation marks around the list of attributes is
optional.)

-m Active Directory attributes Omits attributes that apply to only Active Directory objects such as objectGUID
(globally unique identifier), objectSID (security identifier), pwdLastSet
(password last set), and samAccountType. By default, this parameter is
disabled.
Its primary purpose is to export entries in preparation of re-importing them
into Active Directory. This also activates the linked attribute option, which
appends to the end of the file the values for attributes that are linked to the
current object. For example, a parent object has linked attributes to a child
object, and those entries are placed at the end of the file. (Note: Some
attributes are read-only for Active Directory and, thus, cannot be re-imported.
The -m option strips these attributes out at the time of export to prepare the
file for re-importing.)

-n binary values Specifies not to export binary values. By default, this parameter is disabled.

-j directory path Sets the log file location. The default is the current directory.

-g paged searches Specifies not to perform paged searches. If not specified, it performs paged
searches. Note that some servers might not support the paged search control.

Page 21 of 25Chapter 4 - Active Directory Schema

16/08/2004ms-help://MS.TechNet.2004JUL.1033/win2ksrv/tnoffline/prodtechnol/win2ksrv/reskit/distsys/part1/dsgch04.htm

Table 4.15 LDIFDE Tool Import-specific Parameters

Table 4.16 LDIFDE Tool Credentials Parameters

Note Make sure that all required attributes exist when you create or modify objects. For example, the required attributes for creating a
user are distinguishedName, objectClass, and samAccountName.

Exporting and Re-Importing Objects

Linked attributes contain information about the links to a current object. During a normal export session, a parent object might be
exported before its child object. On the re-import operation, if the parent object has been added before the child object, the operation
fails because the child object is not yet in the directory.

However, when the -m parameter is used to export objects and re-import them into Active Directory, all entries that contain a linked
attribute are appended to the end of the file. Moreover, the linked addition is separated from the main object creation call so that the
failure in membership addition does not cause the object creation to fail. The linked attribute is appended to the end of the file.

Read-only Properties on Objects

Active Directory has Security Accounts Manager (SAM) properties that are read-only because they are set by the system at the time the
object is created. When the -m parameter is used to export objects and re-import them into Active Directory, all of the SAM attributes
are ignored during the export operation. In that way, when the entries are re-imported into Active Directory, they succeed because they
do not contain any SAM information.

Example of an LDIF Import File

In the following example of an LDIF import file format, you also can see how to add a user object to the myDomain.microsoft.com
domain:

dn: CN=sampleUser,CN=Users,DC=myDomain,DC=microsoft,DC=com
changetype: add
cn: sampleUser
description: Example of an Imported User using LDIFDE
objectClass: user
sAMAccountName: sampleUser

The following is an example of the command that is used to import the file in the preceding example:
ldifde -i -f import.ldf -v

Manipulating Data in an LDIF Export File

The preferred method of manipulating the distinguished name (distinguishedName) during an LDIFDE export operation is to use the –c
parameter. For example, by using this parameter in conjunction with the –m parameter, you can import a large group of users from one
domain into another domain.

Note You must use a text editor to make substantial changes to attribute values in your export file prior to import.

Comma-Separated Value File Format

The bulk import and export of data to and from Active Directory can be performed by using files that store data in the Microsoft
comma-separated value (CSV) file format, also known as a .csv file. The CSV file format is supported by many other applications, such
as Microsoft® Excel, that can read and save data in the CSV file format. Also, Microsoft® Exchange Server administration tools can
import and export data by using the CSV format. The CSV format has a command-line utility called "CSVDE" that allows you only to add
new objects. It can be run on a Windows 2000–based server or copied to a Windows 2000–based workstation.

The CSV format consists of a simple text file with one or more lines of data where each value is separated by a comma. The text file
contains entries where the initial entry is a comma-separated list of attribute names. Each subsequent entry in the text file represents a
single object in the directory. Attribute values are delimited by commas.

Using the CSVDE Tool

The CSVDE tool is executed from the command prompt. At the command prompt, type the command CSVDE. The parameters that are
used for the CSVDE tool are the same as those that are used for the LDIFDE tool. However, unlike the LDIFDE tool, CSVDE creates files

-u Unicode Enables Unicode support. When this parameter is used during an export
operation, a Unicode file is generated. When the parameter is used during an
import operation, the tool would expect a Unicode file as input.

-y Enables lazy commit to the directory.

Import-specific
Parameters Value(s) to Specify Description

-k action if errors are
encountered

Skips errors during the import operation and continues processing. If not
specified, the import operation stops if it encounters the following errors:
LDAP_ALREADY_EXISTS
LDAP_CONSTRAINT_VIOLATION
LDAP_ATTRIBUTE_OR_VALUE_EXISTS
LDAP_NO_SUCH_OBJECT
ERROR_MEMBER_IN_ALIAS
It will also skip objects with no attributes.
For more information about these errors, see the Microsoft Platform SDK link
on the Web Resources page at
http://windows.microsoft.com/windows2000/reskit/webresources .

Credentials
Parameters Value(s) to Specify Description

-a user distinguished name
password OR *

Sets the command to run by using the supplied user distinguished name and
password. The default is to run by using the credentials of the currently logged
on user. For example,
-a "cn=yourname,dc=yourcompany,dc=com password".
* = option to hide password

-b username domain
password OR *

Sets the command to run as the username domain password. The default is to
run using the credentials of the currently logged on user.
* = option to hide password

Page 22 of 25Chapter 4 - Active Directory Schema

16/08/2004ms-help://MS.TechNet.2004JUL.1033/win2ksrv/tnoffline/prodtechnol/win2ksrv/reskit/distsys/part1/dsgch04.htm

that can be read from applications other than LDAP servers. For example, if you want to view all Active Directory users in a Excel
report, CSVDE is used to export the directory data into the .csv file format, which could then be read by Excel.

The CSVDE tool is executed from the command prompt. At the prompt, type the command CSVDE and the appropriate parameters in
the following form:

CSVDE [-i] [-f] [-s] [-c] [-v] [-t] [-d] [-r] [-p] [-l] [-o] [-m] [-n] [-e] [-j] [-g] [-k] [-a] [-b] [-?][-u]

The descriptions of these parameters are contained in Tables 4.13, 4.14, 4.15, and 4.16. As for the LDIFDE tool, the default mode for
CSVDE is Export, unless otherwise specified by using the -i parameter for the import mode.

Note CSVDE cannot be used to modify or delete objects. It can be used only to add directory objects. A hyphen (-) is required before
each parameter.

Viewing Data in the .csv File

When you view data in the .csv file, the values for multivalue attributes are expressed as a single value that is internally delimited by a
second user-definable delimiting character (by default, $). Attribute values are listed left to right in the order in which the attribute
names are listed in the initial entry. Values are positional, and every entry must account for each attribute listing in the initial entry.
The attribute names must be in the same order as the data in any line that follows the first line, as shown in the following example:
dn,cn,firstName,surname,description,objectClass,sAMAccountname
"cn=John Smith,cn=Users,dc=myDomain,dc=microsoft,dc=com",John
Smith,John,Smith,Manager,user,jsmith
"cn=Jane Smith,cn=Users,dc=myDomain,dc=microsoft,dc=com",Jane
Smith,Jane,Smith,President,user,janes

Each object stands alone and does not need the context of another object to be listed in the .csv file, which simplifies the reading and
writing of files and allows objects from different classes to be contained in a single file.

Another example shows the .csv file format and lists the header, which contains the LDAP display names of the properties ("attributes")
— distinguished name, object class, common name, given name, surname, telephone number, street address, locale, country/region,
and sAMAccountName.

dn,objectClass,cn,givenName,sn,telephoneNumber,
street,l,c,sAMAccountName
"cn=James Smith,cn=Users,dc=myDomain,dc=microsoft,dc=com",user,James
Smith,James,Smith, ,203-223-2233, 15 Woodbine St.,Fenwick,US,jsmith

All data values are represented as strings. Numeric values are represented by numeric strings; binary values are represented by
hexadecimal strings. Hexadecimal strings start with the character "x," followed by a single quotation mark ('), then the hexadecimal
string, and, finally, another single quotation mark ('). The following is an example of a hexadecimal string:

X'01050000000000051500000079e3fc535729024c235f636bf5010000'

Syntax information is stored in the schema of the destination directory. Programs that accept imported .csv files determine how to
process the values by using the schema in the target directory.

A missing or unsupported attribute value has an empty position in the string. For example, if the third attribute value for an entry is
missing, it would be expressed as follows:
firstvalue,secondvalue,,fourthvalue

Multivalue attributes are separated by semicolons (;). For example if there are three attributes and the second one is a multivalue
attribute, it would be expressed as follows:

1stvalue,2ndvalue1;2ndvalue2;2ndvalue3,3rd value

Reserved characters that appear in string properties are represented through an escape mechanism. The following are reserved
characters:

l Backslash (\)

l Semicolon (;)

l Special character for hexadecimal representation (x')

The escape mechanism uses a backslash (\) before a reserved character as an escape character. If a value contains a backslash, the
backslash in the value also must be preceded by the escape character — that is, by another backslash (for example, \\). The semicolon
(;) character is used to delimit multivalues. If the value itself contains a semicolon, the semicolon in the value must be preceded by the
escape character (for example, \;). The hexadecimal prefix (x') character, if used in a value, must also be preceded by an escape
character (for example, \x').

There are two other characters that must be handled in a special way. They are the comma (,) and the double quotation marks (")
characters. The comma (,) is treated as a special character in the CSV format because it is used to separate values. If the value
contains a comma (,), the format specifies that the comma has to be enclosed by double quotation marks (for example, value1,value2
are represented as "value1,value2"). The double quotation marks (") character is used to contain values if the values contain commas
(,). When a value contains a pair of double quotation marks as well as a comma, the quotation marks in the value have to be enclosed
with another set of double quotation marks, as follows:

"value1","value2" is represented as ""value1"",""value2""
value1"value2 is represented as "value1""value2"

The following CSV file shows an example of adding an organizational unit, followed by a user, and a computer:

dn,cn,givenName,sn,description,objectClass,sAMAccountname
"ou=sampleOU,dc=myDomain,dc=microsoft,dc=com",,,,Sample
Organizational Unit,organizationalUnit,
"cn=John Smith,ou=sampleOU,dc=myDomain,dc=microsoft,dc=com",John
Smith,John,Smith,Sample User,user,jsmith
"cn=sampleComputer,ou=sampleOU,dc=myDomain,dc=microsoft,dc=com",samp
leComputer,,,Sample Computer,computer,computer1

Note Both ANSI text and UNICODE are supported.

Using LDIFDE and CSVDE to Modify the Schema

LDIFDE and CSVDE use files that contain directory data in the appropriate format. These files can be imported or exported to LDAP-
based directory servers as a means of populating a directory or modifying objects in a directory. Because the Active Directory schema
exists as a collection of directory objects, either of these tools can be used to extend the schema.

Note At present, CSVDE can be used only for additions to the directory, not for modifications to the directory.

LDIF File Format

The LDIF file format can be used to perform batch operations on directories that conform to LDAP standards. It is suitable for additions

Page 23 of 25Chapter 4 - Active Directory Schema

16/08/2004ms-help://MS.TechNet.2004JUL.1033/win2ksrv/tnoffline/prodtechnol/win2ksrv/reskit/distsys/part1/dsgch04.htm

to the directory as well as modifications and deletions of directory objects. A record in an LDIF file consists of a sequence of lines that
either describe a directory entry or a set of changes to a single directory. This format can be used for all LDAP operations.

The preferred method when modifying the schema is to use the Active Directory Schema console to edit the schema on a practice
system that is isolated from your real enterprise. You can use the LDIFDE export to produce a script, which you can then run against
your live system. The following example represents the contents of a sample LDIF file that can be used to add a new attribute to Active
Directory.
dn: CN=New-Attribute-Name,CN=Schema,CN=Configuration,
DC=microsoft,DC=com
changetype: add
objectClass: attributeSchema
ldapDisplayName: newAttributeName
adminDisplayName: New-Attribute-Name
adminDescription: New-Attribute-Name
attributeId: 1.2.840.113556.1.4.8000.1 <- the id has to be unique
attributeSyntax: 2.5.5.12
omSyntax: 64
isSingleValued: TRUE
systemOnly: FALSE
searchFlags: 0
showInAdvancedViewOnly: TRUE

The following example shows an LDIF file that can be used to force a schema cache update.
dn:
changeType: modify
add: schemaUpdateNow
schemaUpdateNow: 1

For more information about the LDIF format and using LDIFDE, see the Microsoft Platform SDK link on the Web Resources page at
http://windows.microsoft.com/windows2000/reskit/webresources .

CSV File Format

The CSV file format is a simple format whose primary benefit is ease of use. In the CSV file format, each line represents a discrete
object in the directory, with the object's attributes separated by commas. The first line of the file always contains all of the attribute
names. Each subsequent line represents a different entry in the directory. Values for multivalue attributes can also be specified and are
delimited by the semicolon (;) character.

Because this format is compatible with the Microsoft Excel CSV format, you can dump directory information to an Excel spreadsheet or
import data from a spreadsheet into Active Directory. This format can be used only for additions to the directory. The following example
represents the contents of a CSV file that can be used to add a user to Active Directory:

dn,objectClass,cn,sn,givenName,telephoneNumber,street,l,c,sAMAccountName
"CN=John Doe,DC=myDomain,DC=microsoft,DC=com",
User,John Doe,Doe,John, 555-456-7890,123 Magnolia Ave.,Redmond,US,jdoe

Both the CSVDE and LDIFDE tools have command line help that can be viewed by typing the command name at an MS-DOS® prompt.
Because both of these tools allow data to be imported and exported, there are a number of different uses for them.

Migration to Active Directory By using either of these tools, users of other directory services can import data to Active Directory.
This works for any directory that is LDAP-compatible as long as the attribute names match.

Publishing Information from the Directory You can use either of these tools to export directory data to another application that can
read either the LDIF or CSV format. You can also export to other LDAP-compatible directory services, provided there are matching
attribute names.

Adding Resources to the Directory In addition to the Active Directory Users and Computer console and ADSI Edit, administrators
can choose to use one of these tools to add objects to a directory. These tools lie somewhere between the other options in terms of
ease of use and flexibility. Because the schema is represented in Active Directory as directory objects, you can use LDIFDE or CSVDE to
extend the schema with new or modified schema objects. In fact, if your application requires schema modifications, the best way to
accomplish this is to distribute an LDIF or CSV file with the application that is to be imported to the schema.

Figure 4.5 illustrates one way in which LDIF can be used to extend Active Directory.

If your browser does not support inline frames, click here to view on a separate page.

Figure 4.5 Extending Active Directory with LDIF

Using Active Directory Service Interfaces and Visual Basic Scripts

Although one potential benefit of using an LDIF or CSV file is that the administrator can look at it to see what it does, consider the
merits of extending the schema programmatically:

l A programmatic extension is invariant; it is a Windows executable file. The binary cannot be tampered with, unlike an LDIF or a CSV
file, either of which can be modified inadvertently or maliciously.

l Programs can detect and recover from errors and provide intelligent feedback.

l Programs handle Unicode without resorting to Base64 encoding. (Unicode is a 16-bit character set that contains all of the characters
commonly used in information processing.)

l Programs can use the Windows Installer (.msi) setup APIs.

Page 24 of 25Chapter 4 - Active Directory Schema

16/08/2004ms-help://MS.TechNet.2004JUL.1033/win2ksrv/tnoffline/prodtechnol/win2ksrv/reskit/distsys/part1/dsgch04.htm

l Programs can be signed to prove their authenticity.

Active Directory provides a set of interfaces that enable you to gain access to directory objects, including schema objects,
programmatically. ADSI defines a directory service model and a set of COM interfaces that you can easily use with a variety of
programming languages. ADSI conforms to the Component Object Model and supports standard COM features.

By using Microsoft® Visual Basic® Script and ADSI, you can write scripts easily to accomplish various directory modifications, including
extending the schema.

These are the specific ADSI interfaces to use when you extend the schema:

IADsContainer Use IADsContainer::Create to create new classSchema and attributeSchema objects.

IADs Use IADs::Get (or GetEx) to read the attributes of classSchema and attributeSchema objects. Use IADs::Put (or PutEx) to set
the attributes of classSchema and attributeSchema objects. PutEx is particularly useful in manipulating the lists of mustContain and
mightContain attributes because it is designed specifically for handling multivalue attributes.

The code in the example that follows represents a script that you can use to add a user to Active Directory.
Dim oDomain
Dim oUser

Set oDomain=GetObject("LDAP://OU=Marketing,DC=antipodes,DC=com")
Set oUser = oDomain.Create("user","cn=John Smith")
oUser.Put "samAccountName","JSmith"
oUser.Put "givenName","John"
oUser.Put "sn","Smith"
oUser.Put "userPrincipalName","jsmith@antipodes.com"
oUser.SetInfo
MsgBox "User created " & oUser.Name
Set oDomain = Nothing
MsgBox "Finished"
WScript.Quit

Note For more information on ADSI and ADSI interfaces, see the Microsoft Platform SDK link on the Web Resources page at
http://windows.microsoft.com/windows2000/reskit/webresources .

Using the Active Directory Schema Console

The Active Directory Schema console allows members of the Schema Administrators group to manage the schema through a graphical
interface. With it, you can create and modify classes and attributes and also specify what attributes are indexed and what attributes are
replicated to the Global Catalog. After you start the Active Directory Schema console, the first thing that you must do is to make sure
that the tool is focused on the schema master for your enterprise.

Note The Schema Management snap-in is not one of the default MMC snap-ins that is provided with Windows 2000 Server. To make it
appear in the list of available snap-ins, you must install the admin tools package (Adminpak.msi). To register the Schema Management
snap-in, open your %systemroot%\System32 folder and run Regsvr32 Schmmgmt.dll from the command prompt or from the Run
command on the Start menu.

To view or change the current schema master by using the Active Directory Schema console

1. Open MMC, and then install the Active Directory Schema snap-in.

2. Right-click Active Directory Schema, and then click Operations Master.

3. The Current Operations Master that is displayed is the schema master. Click OK to leave it as is.

– Or –

Click Change to change the server that is the current FSMO Role Owner for the schema. If the current domain controller (the one
that is listed in Current Focus) is also the current operations master, you must use the Active Directory Tree console in MMC to
focus on another domain controller before you can change the operations master.

After you have verified that the tool is focused on the current schema master, you can use it to add, modify, or deactivate attributes
and classes. Remember that the account you are using must be a member of the Schema Administrators group and that the server
must be set to allow schema modifications.

Note Schema objects that are part of the default base schema cannot be deactivated.

Send feedback to Microsoft

© 2004 Microsoft Corporation. All rights reserved.

Page 25 of 25Chapter 4 - Active Directory Schema

16/08/2004ms-help://MS.TechNet.2004JUL.1033/win2ksrv/tnoffline/prodtechnol/win2ksrv/reskit/distsys/part1/dsgch04.htm

